首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Wettich A  Biebricher CK 《Biochemistry》2001,40(11):3308-3315
An RNA that replicates with core RNA polymerase from E. coli and the substrates ATP, CTP, ITP, and UTP, was selected from a random poly(A,U,I,C) library and named EcorpI. Another replicating RNA, EcorpG, was obtained by template-free incubation of holo RNA polymerase and the substrates ATP, CTP, GTP, and UTP. Both RNA species showed typical autocatalytic RNA amplification profiles with replication rates in the range of other RNA replicons. The replication products were heterogeneous in length; the different lengths appeared to be different replication intermediates. Both RNA were single-stranded with much internal base-pairing but low melting points. Their sequences were composed by permutations of certain sequence motives in both polarities separated by short oligo(A) and oligo(U) clusters. There was evidence for 3'-terminal elongation on an intramolecular template. No double-stranded RNA was found, even though base-pairing is certainly the underlying basis of the replication process. The reaction was highly sensitive: a few RNA strands were sufficient to trigger an amplification avalanche.  相似文献   

4.
A method is described for the rapid purification of RNA polymerase holoenzyme from small amounts of Escherichia coli cells. Chromatography of a crude extract on a single-stranded DNA agarose column followed by gel filtration chromatography gave 95% pure holoenzyme. The enzyme had kinetic characteristics on T7 DNA identical to those of RNA polymerase purified by other more laborious procedures.  相似文献   

5.
6.
7.
8.
Pyran copolymer, a potent inhibitor of DNA-dependent RNA polymerase from Escherichia coli, prevented polyribonucleotide synthesis by blocking both the initiation and elongation steps. The inhibition was noncompetitive with respect to template and nucleotide triphosphate substrates. Template binding and the stability of the nascent RNA chain were not affected by the inhibitor.  相似文献   

9.
10.
11.
12.
New fluorescent derivatives of dinucleoside monophosphates, (5'-AmNS)UpA/ApU/GpU/CpA, with a fluorophore, 1-aminonaphthalene-5-sulfonic acid (AmNS), attached to the first nucleotide of the dinucleoside monophosphates via a 5'-secondary amine linkage were synthesized in good yield. The chemical structure of (5'-AmNS)ApU was proved by the phosphodiesterase digestion followed by Whatman No. 3MM paper chromatographic and spectroscopic analysis of the digested products. The ability of these analogs to be incorporated into the 5' terminus of RNA chain forming fluorescent oligonucleotides by Escherichia coli RNA polymerase was studied in the presence of a synthetic DNA template. The enzymatic reaction of (5'-AmNS)UpA and [3H]UTP in the presence of poly(dA-dT) yielded (5'-AmNS)UpAp[3H]U in greater than 30% yield with the Km values of 5 and 2.5 microM and Vmax values of 17 and 25 nmol/min/mg of enzyme for (5'-AmNS)UpA and UpA, respectively. The structure of this fluorescent trinucleotide was identified by RNase A digestion and paper chromatographic analysis of the digested products. (5'-AmNS)UpA or (5'-AmNS)ApU exhibits two absorption maxima around 270 and 340-350 nm and a fluorescent emission maximum at 445 nm when excited at 340 nm. These spectral characteristics permit their use as energy donors for the transfer of energy to the intrinsic cobalt of the cobalt-substituted RNA polymerases. Upon hydrolysis of the phosphodiester bond of these analogs by venom phosphodiesterase, the absorption at 340 and 270 nm increased by 5 and 20%, respectively, while their fluorescence at 445 nm was enhanced by 25%. Thus, these analogs can be used for studying the dynamics of initiation and elongation reactions catalyzed by DNA-dependent RNA polymerases by absorption and fluorescence spectroscopies.  相似文献   

13.
14.
15.
A Y Woody  C R Vader  R W Woody  B E Haley 《Biochemistry》1984,23(13):2843-2848
A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.  相似文献   

16.
It is shown that the DNA-dependent RNA polymerase of Escherichia coli can synthesize complementary RNA (cRNA) directly on rRNA and mRNA templates. Synthesis occurred preferentially in the presence of Mn2+ and at relatively high substrate and enzyme concentrations. No primer was required, and addition of oligo-U to a mRNA-dependent reaction gave no marked stimulation. Sedimentation analysis of cRNA made on different templates indicated that the products were mainly 2-4 S, but a fraction of the product was larger. Fingerprints of 32P-labelled cRNA made on 5 S rRNA and 18 S rRNA indicated that the complexity of the cRNAs was related to the size of the template, suggesting that a substantial portion of the templates were copied. This reaction provides a simple method for preparing cRNA of high specific activity for use in hybridisation studies, and possibly in sequence analysis. 32P-labelled cRNA made on 18 S and 28 S rRNA was a sensitive hybridisation probe for detection of the specific fragments of mouse DNA containing the rRNA genes.  相似文献   

17.
Rat liver fatty acid binding protein (L-FABP) was efficiently expressed in Escherichia coli and purified to homogeneity. The cDNA encoding L-FABP was ligated into the pTrc99A expression vector and expressed by induction with isopropyl-beta-d-thiogalactopyranoside under the control of the P(trc) promoter. Following an 18 h induction period, L-FABP constituted approximately 3% of the cytosolic protein. The protein could be purified to electrophoretic homogeneity (silver-stained polyacrylamide gel detection) by ammonium sulfate fractionation (65% saturation) of the soluble bacterial lysate followed by the chromatographic sequence of anion-exchange-->hydrophobic interaction-->anion-exchange chromatography. The recombinant protein displayed an isoelectric point of 7.0 and cross-reactivity with rabbit anti-(human L-FABP) polyclonal antibody. The ligand binding properties of the delipidated L-FABP were examined by titration with the fluorescent probe 1-anilino-8-naphthalene sulfonic acid and isothermal titration calorimetric analysis of oleic acid binding. The purified rat L-FABP displayed a binding stoichiometry of 2:1 (ANS:L-FABP) with dissociation constants (K(d)) of 1.7 and 15.5 microM for the high and low affinity binding sites, respectively. The K(d) values determined by ITC for oleic acid binding were 0.155 and 4.04 microM with a binding stoichiometry of approximately 2 mol of fatty acid/mol of protein. These physicochemical and binding properties are in agreement with those of L-FABP isolated from rat liver tissue.  相似文献   

18.
X-ray absorption spectroscopy is ideally suited for the investigation of the electronic structure and the local environment (approximately 5 A) of specific atoms in biomolecules. While the edge region provides information about the valence state of the absorbing atom, the chemical identity of neighboring atoms, and the coordination geometry, the extended x-ray absorption fine structure region contains information about the number and average distance of neighboring atoms and their relative disorder. The development of sensitive detection methods has allowed studies using near physiological concentrations (as low as approximately 100 microM). RNA polymerase from Escherichia coli contains two zinc atoms: one tightly bound in the beta' subunit, the subunit that participates in template binding, and the other loosely bound in the beta subunit, the subunit that participates in substrate binding. X-ray absorption studies of these zinc sites in the native protein and of the zinc site in the beta' subunit after removal of the zinc in the beta subunit site by p-(hydroxymercuri)benzenesulfonate (Giedroc, D. P., and Coleman, J. E. (1986) Biochemistry 25, 4969-4978) indicate that both zinc sites have octahedral coordination. The zinc in the beta' subunit site has four sulfur ligands at an average distance of 2.36 +/- 0.02 A and two oxygen (or nitrogen) ligands at an average distance of 2.23 +/- 0.02 A. The beta subunit zinc site has five sulfur ligands at an average distance of 2.38 +/- 0.01 A and one histidine nitrogen ligand at 2.14 +/- 0.02 A. These results are in general agreement with earlier biochemical and spectroscopic studies.  相似文献   

19.
A bulk purification procedure has been designed to maximize the yield of Escherichia coli elongation factor, Ts, with a minimum of effort and time. The enzyme purification is achieved by DEAE-Sepharose and elongation factor Tu-affinity chromatographies. The typical yield is 150 mg/kg of E. coli (B) cells.  相似文献   

20.
The 1H n.m.r. study of the DNA-dependent RNA polymerase from Escherichia coli has revealed that the holoenzyme (ββ′α2σ) displays two mobile regions: one, observable also in the core enzyme (ββ′α2), is characterized by basic amino acids and its appearance and form depend on ionic strength; the other, specific to the holoenzyme, is characterized by threonine residues and its appearance does not depend on ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号