首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants display differential responses following mechanical damage and insect herbivory. Both caterpillar attack and the application of caterpillar oral secretions (OS) to wounded leaves stimulates volatile emission above mechanical damage alone. Volicitin ( N- 17-hydroxylinolenoyl- l -glutamine), present in beet armyworm (BAW, Spodoptera exigua ) OS, is a powerful elicitor of volatiles in excised maize seedlings ( Zea mays cv. Delprim). We consider some of the mechanistic differences between wounding and insect herbivory in maize by examining the activity of volicitin, changes in jasmonic acid (JA) levels, and volatile emission from both intact plant and excised leaf bioassays. Compared to mechanical damage alone, volicitin stimulated increases in both JA levels and sesquiterpene volatiles when applied to intact plants. In a bioassay comparison, excised leaves were more sensitive and produced far greater volatile responses than intact plants following applications of both volicitin and JA. In the excised leaf bioassay, volicitin applications (10–500 pmol) to wounded leaves resulted in dose dependent JA increases and a direct positive relationship between JA and sesquiterpene volatile emission. Interestingly, volicitin-induced JA levels did not differ between intact and excised bioassays, suggesting a possible interaction of JA with other regulatory signals in excised plants. In addition to JA, insect herbivory is known to stimulate the production of ethylene. Significant increases in ethylene were induced only by BAW herbivory and not by either wounding or volicitin treatments. Using intact plant bioassays, ethylene (at 1 µl l−1 or less) greatly promoted volatile emission induced by volicitin and JA but not mechanical damage alone. For intact plants, wounding, elicitor-induced JA and insect-induced ethylene appear to be important interacting components in the stimulation of insect-induced volatile emission.  相似文献   

2.
Studies of insect herbivory have mostly focused on leaf‐feeding even though most woody plant biomass is stem tissue. Attack to stems has the potential to be more detrimental to plant performance than attack to leaves. Here we asked how severe is the impact of insect stem herbivory on plant performance. We quantify the effect of insect stem herbivory via a meta‐analysis of 119 papers in 100 studies (papers by the same authors were treated as the same study). These studies involved 92 plant species and 70 species of insect herbivore (including simulated herbivory). Attack to plant stems reduced plant performance by an average of approximately 22%. Stem herbivory had greatest impacts on plant and branch survival, which was reduced by 63%. Measures of plant reproduction and vegetative biomass were reduced by 33% and 16% respectively, while measurements of photosynthetic rate were not significantly different between plants with and without stem herbivore attack. Stem herbivory led to a decline in leader performance but an increase in performance of laterals, highlighting the importance of plant compensation. Juvenile plants were more severely affected by stem herbivory than adult plants, and studies conducted in greenhouses found more severe effects than studies conducted in the field. Stem herbivory did not have a significant effects on any of the non‐performance responses measured (defence compounds, SLA, root:shoot, phenology and plant carbon and nitrogen). We compare our results with results from various meta‐analyses considering herbivory on other plant parts. The impact of insect herbivory to stems on plant performance appears at least as severe as insect herbivory to roots and leaves, if not more.  相似文献   

3.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

4.
Both herbivory and mechanical damage result in increases in the concentration of the wound-signal molecule, jasmonic acid (JA), and the defense metabolite, nicotine, in native tobacco plants, Nicotiana sylvestris Speg. et Comes (Solanaceae). We found that higher concentrations of JA resulted from herbivory by Manduca sexta (L.) larvae than from the mechanical damage designed to mimic the herbivory. While both herbivory and mechanical damage increased JA concentrations in roots of wounded plants, herbivory did not induce either higher root JA or nicotine responses than mechanical damage. In a separate experiment in which mechanical damage was not designed to mimic herbivory, JA responses to herbivory were higher than those to mechanical damage, but the whole-plant (WP) nicotine responses were smaller. Furthermore, when regurgitants from M. sexta larvae were applied to standardized mechanical leaf wounds, leaf JA responses were dramatically amplified. However, neither the root JA response nor the WP nicotine response was comparably amplified by application of regurgitants. Our findings demonstrate that the response of N. sylvestris to herbivory is different from its response to mechanical damage; moreover, oral secretions from larvae may be partly responsible for the difference. During feeding, M. sexta larvae appear to modify the plant's normal defensive response to leaf wounding by reducing the systemic increase in root JA after leaf damage and the subsequent WP nicotine response. Received: 28 February 1997 / Accepted: 9 June 1997  相似文献   

5.
Research on plant tolerance to herbivory has been so far largely focussed on herbaceous plants partly due to the implicit assumption that woody plants are inherently lower in their compensatory potential as compared to herbs. However, tolerance to herbivory should be an important part of resistance of woody plants because their apparency to herbivory is high due to a large size and long life span, and their defence systems cannot completely exclude herbivory. Moreover, the longer life span, more complex modularity and higher sectorality of woody plants as compared to herbs imply that compensatory responses in woody plants may take several years to develop, and that consequences of herbivore damage to individual modules may profoundly differ from whole-plant responses. Therefore, short-term studies using branches or ramets as experimental units are likely to underestimate the tolerance of woody plants to herbivory. In addition, defoliation by insects (the most common type of herbivory experienced by woody plants) is less likely to release apical dominance and trigger biomass compensation than mammalian grazing on herbaceous plants. We conclude, therefore, that the seemingly different recovery potentials exhibited by woody and herbaceous plants are more likely to be the consequences of differences between the two types of plants in modular architecture, longevity and the type of herbivory they commonly experience rather than indications of inherent differences in compensatory ability. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Theory predicts that plant defensive traits are costly due to trade-offs between allocation to defense and growth and reproduction. Most previous studies of costs of plant defense focused on female fitness costs of constitutively expressed defenses. Consideration of alternative plant strategies, such as induced defenses and tolerance to herbivory, and multiple types of costs, including allocation to male reproductive function, may increase our ability to detect costs of plant defense against herbivores. In this study we measured male and female reproductive costs associated with induced responses and tolerance to herbivory in annual wild radish plants (Raphanus raphanistrum). We induced resistance in the plants by subjecting them to herbivory by Pieris rapae caterpillars. We also induced resistance in plants without leaf tissue removal using a natural chemical elicitor, jasmonic acid; in addition, we removed leaf tissue without inducing plant responses using manual clipping. Induced responses included increased concentrations of indole glucosinolates, which are putative defense compounds. Induced responses, in the absence of leaf tissue removal, reduced plant fitness when five fitness components were considered together; costs of induction were individually detected for time to first flower and number of pollen grains produced per flower. In this system, induced responses appear to impose a cost, although this cost may not have been detected had we only quantified the traditionally measured fitness components, growth and seed production. In the absence of induced responses, 50% leaf tissue removal, reduced plant fitness in three out of the five fitness components measured. Induced responses to herbivory and leaf tissue removal had additive effects on plant fitness. Although plant sibships varied greatly (49–136%) in their level of tolerance to herbivory, costs of tolerance were not detected, as we did not find a negative association between the ability to compensate for damage and plant fitness in the absence of damage. We suggest that consideration of alternative plant defense strategies and multiple costs will result in a broader understanding of the evolutionary ecology of plant defense.  相似文献   

7.
The production of extrafloral nectar is thought to represent an indirect plant defense, as it allows plants to recruit natural enemies which can protect the plant against herbivore attacks. In previous work we demonstrated that plants may show a strong increase in extrafloral nectar secretion in response to herbivory. Here we address the question of whether this induction is herbivory-specific, or simply a general response to tissue damage. We compared the level of induction in Gossypium herbaceum (L.) (Malvaceae) following either herbivory by Spodoptera littoralis (Boisduval) (Lepidoptera; Noctuidae) or mechanical damage with and without the addition of S. littoralis regurgitate. Both herbivore feeding and mechanical damage significantly raised nectar production. No difference in volume or pattern of nectar secretion was found between natural and mechanical damage, nor between artificially damaged plants treated with regurgitate or water. Our findings indicate that the induction of extrafloral nectar secretion constitutes a general response by the plant to tissue damage, rather than representing a herbivory-specific mechanism. The costs and benefits of such a non-specific strategy for the plant are discussed.  相似文献   

8.
Friend or foe?: a plant's induced response to an omnivore   总被引:1,自引:0,他引:1  
Omnivorous natural enemies of herbivores consume plant-based resources and may elicit induced resistance in their host plant. A greater induction threshold for damage produced by omnivorous predators than for strict herbivores might be expected if omnivore performance is enhanced on noninduced plants, allowing them to reduce future levels of herbivory. Currently, it is not known if a plant responds to feeding by omnivorous predators and by herbivores similarly. To examine this question, we chose herbivore and omnivore species that produce the same kind of quantifiable damage to cotton leaves, enabling us to control statistically for the intensity of plant damage, and ask whether plant responses differed depending on the identity of the damaging species. We first compared changes in plant peroxidase activity, gossypol gland number and density, and leaf area in response to feeding by the spider mite Tetranychus turkestani (Ugarov and Nikolski) (an herbivore) and by one of the mite's principal natural enemies, the western flower thrips Frankliniella occidentalis (Pergande) (an omnivore). Both species increased the activity of peroxidase, but when we controlled for the amount of damage, the peroxidase activity of mite-damaged plants was higher than that of thrips-damaged plants. We also found that thrips, but not spider mites, increased the density of gossypol glands in the second true leaf. In a second experiment we included an additional herbivore, the bean thrips Caliothrips fasciatus (Pergande), to see if the different responses of cotton to thrips and mite herbivory we first observed were attributable to differences in trophic function (herbivore versus omnivore) or to other differences in feeding generated by thrips versus mites. Cotton plants exhibited the same pattern of induced responses (elevated peroxidase, increased number of glands, reduced leaf area) to herbivory generated by the bean thrips (an herbivore) and western flower thrips (an omnivore), suggesting that trophic function was not a key determinant of plant response. Thrips-damaged plants again showed a significantly higher density of gossypol glands than did mite-damaged plants. Overall, our results suggest that (1) an omnivorous predator systemically induces resistance traits in cotton and (2) whereas there is evidence of taxonomic specificity (thrips versus mites), there is little support for trophic specificity (herbivorous thrips versus omnivorous thrips) in the elicitation of induced responses.  相似文献   

9.
秦秋菊  李莎  毛达  李娜  李梦杰  刘顺 《生态学报》2016,36(7):1890-1897
植物花外蜜的分泌是一种植物间接防御反应。为了明确植食性昆虫、机械伤和机械伤诱导的挥发性气体在植物花外蜜诱导分泌中的作用,分析了咀嚼式口器昆虫棉铃虫Helicoverpa armigera(Hübner)、刺吸式口器昆虫棉蚜Aphis gossypii Glover取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物、针刺机械伤以及机械伤诱导挥发物、顺式-茉莉酮对棉花Gossypium hirsutum L.叶片花外蜜分泌量的影响。结果表明,棉铃虫取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物处理均显著增加了被处理叶片花外蜜的分泌量。棉花花外蜜的诱导效应在处理叶片上表现明显,并且在较幼嫩的第3片真叶上也有系统性增长。顺式-茉莉酮和机械伤挥发物处理1 d对棉花较幼嫩的第4、5片真叶花外蜜有诱导效应。棉花叶片花外蜜的诱导主要与植物组织损伤有关;不同口器类型的昆虫对棉花叶片花外蜜的诱导量不同,咀嚼式口器的棉铃虫对棉花花外蜜的诱导强度显著高于刺吸式口器的棉蚜;顺式-茉莉酮和机械伤诱导的挥发物能作为棉花植株间交流的信息物质诱导棉花幼嫩叶片花外蜜的分泌。  相似文献   

10.
Aims Although ecological interactions are often conceptualized and studied in a pairwise framework, ecologists recognize that the outcomes of these interactions are influenced by other members of the community. Interactions (i) between plants and insect herbivores and (ii) between plants and mycorrhizal fungi are ubiquitous in terrestrial ecosystems and may be linked via common host plants. Previous studies suggest that colonization by arbuscular mycorrhizal fungi (AMF) can modify plants' induced responses to herbivore attack, but these indirect effects of fungal symbionts are poorly understood. I investigated the role of AMF in induced plant response to a generalist herbivore.Methods I manipulated AMF status and herbivory in Cucumis sativus L. (cucumber, Cucurbitaceae) in a greenhouse to investigate induced responses in the presence and absence of the mycorrhizal fungus Glomus intraradices (Glomeraceae). Spodoptera exigua Hübner (Noctuidae) were used to manipulate prior damage and later as assay caterpillars. I also measured G. intraradices and herbivory effects on plant N and effects on plant growth.Important findings AMF status affected the induced response of C. sativus, underscoring the importance of incorporating the roles of plant symbionts into plant defense theory. Assay caterpillars ate significantly more leaf tissue only on mycorrhizal plants that had experienced prior damage. Despite more consumption, biomass change in these caterpillars did not differ from those feeding on plants with other treatment combinations. Leaf N content was reduced by G. intraradices but unaffected by herbivory treatments, suggesting that the observed differences in assay caterpillar feeding were due to changes in defensive chemistry that depended on AMF.  相似文献   

11.
Herbivore feeding elicits defense responses in infested plants, including the emission of volatile organic compounds that can serve as indirect defense signals. Until now, the contribution of plant tissue wounding during the feeding process in the elicitation of defense responses has not been clear. For example, in lima bean (Phaseolus lunatus), the composition of the volatiles induced by both the insect caterpillar Spodoptera littoralis and the snail Cepaea hortensis is very similar. Thus, a mechanical caterpillar, MecWorm, has been designed and used in this study, which very closely resembles the herbivore-caused tissue damage in terms of similar physical appearance and long-lasting wounding period on defined leaf areas. This mode of treatment was sufficient to induce the emission of a volatile organic compound blend qualitatively similar to that as known from real herbivore feeding, although there were significant quantitative differences for a number of compounds. Moreover, both the duration and the area that has been mechanically damaged contribute to the induction of the whole volatile response. Based on those two parameters, time and area, which can replace each other to some extent, a damage level can be defined. That damage level exhibits a close linear relationship with the accumulation of fatty acid-derived volatiles and monoterpenes, while other terpenoid volatiles and methyl salicylate respond in a nonlinear manner. The results strongly suggest that the impact of mechanical wounding on the induction of defense responses during herbivore feeding was until now underestimated. Controlled and reproducible mechanical damage that strongly resembles the insect's feeding process represents a valuable tool for analyzing the role of the various signals involved in the induction of plant defense reactions against herbivory.  相似文献   

12.
Differences in size-related ecology and behaviour between vertebrate and invertebrate herbivores lead to differences in the rates, tissue specificity, and spatial distribution of their damage, as well as in their indirect effects. As a result, many features of tolerance to herbivory by these groups also may differ. Tolerating vertebrate herbivory may demand the ability to tolerate sporadic non-specific impacts; this may be achieved by broad responses promoting regrowth and resource acquisition. In contrast, the diversity of different types of invertebrate damage seems likely to demand a correspondingly great variety of responses. These conclusions suggest that tolerance to invertebrates may involve a broader set of responses than tolerance to vertebrates; conversely, the greater specificity of these responses may make it more difficult for arthropod-tolerant plants to achieve cross-tolerance to other types of damage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Chemical elicitors and mechanical treatments simulating real insect herbivory have been increasingly used to study induced defensive responses in woody plants. However, simultaneous quantitative comparisons of plant chemical defences elicited by real and simulated herbivory have received little attention. In this paper we compared the effects of real herbivory, simulated herbivory using two chemical elicitors, and mechanical damage treatments on the quantitative secondary chemistry of Pinus pinaster juveniles (namely on non-volatile resin in the stem and total phenolics in the needles). The real herbivory involved phloem wounding by Hylobius abietis and defoliation by Brachyderes lusitanicus (two pine weevils); the chemical elicitors to simulate herbivory induction were 40 mM methyl jasmonate (MJ) and 20 μM benzothiadiazole (BTH); and the mechanical treatments included phloem wounding and needle clipping. We also performed an additional experiment for assessing at what extent insect extracts could increase plant responses over mechanical damage. Chemical induction with MJ, mechanical wounding and real phloem herbivory by H. abietis all produced quantitatively similar results, increasing the concentration of resin in the stem and total phenolics in the needles by equivalent magnitudes. Exogenous application of BTH increased the concentration of phenolic compounds in pine needles, but did not show the same effect on stem resin. Contrastingly, we did not find significant changes in the concentration of resin in the stem or phenolics in the needles after needle clipping and B. lusitanicus feeding. Mechanical damage followed by the application of extracts from the insects B. lusitanicus and H. abietis on the injured tissues did not increase the responses in comparison to mechanical damage alone. The fact that strong induced responses elicited by phloem wounding insects are equally elicited by phloem injuries suggests that defences in pine trees are raised with low specificity regarding biotic enemies. Results from this paper support future methodological approaches using chemical elicitors and mechanical damage as simulated herbivory treatments for the experimental induction of conifer defences.  相似文献   

14.
Karina Boege 《Oikos》2004,107(3):541-548
Induced changes in plant quality are hypothesized to reduce herbivore numbers and subsequent damage to the plant. The resultant decrease in herbivory may be due to direct negative impacts on herbivores, through the reduction in foliage quality as food, or due to indirect effects of plant-induced traits interacting with the third trophic level, increasing predation and parasitism rates on herbivores. The relative importance of induced responses as direct and/or indirect defenses has not been evaluated in natural systems. Moreover, few studies have evaluated the influence of early-season damage on late-season herbivory in natural systems, particularly in the tropics. The presence of induced responses and subsequent impact on folivory as a consequence of early-season damage were evaluated in three plant species ( Croton pseudoniveus , Bursera instabilis and Piper stipulaceum ) in a tropical dry forest in Mexico. A two-factorial experiment was applied to determine if induced responses influenced subsequent herbivory directly, by reducing foliage quality, or indirectly, through their interaction with parasitoids and predatory arthropods. Plants from all three species with reduced early-season damage had higher herbivory rates through the rest of the growing season, compared to plants that were damaged during leaf expansion. Chemical analyses showed that early-season damage induced the production of total phenolics and condensed tannins for C. pseudoniveus and B. instabilis , respectively. The mechanism by which these compounds affected subsequent herbivory was most likely by directly reducing foliage quality as food for herbivores, given that predatory arthropods and parasitoids had no effects on herbivory in this study. I conclude that early-season damage in these three species influenced later-season herbivory through the induction of plant responses that may act to reduce plant quality as food for herbivores.  相似文献   

15.
Plant responses to herbivory include tolerance (i.e. compensatory growth) and defense. Several factors influence the tolerance of a plant following herbivory, including plant genetic identity, site nutrient availability, and previous and/or concurrent herbivory. We studied the effects of these factors on the compensatory response of Salix planifolia ssp. planifolia, a shrub species common in the boreal and subarctic regions of North America. We cloned several genets of S. planifolia and submitted them to simulated root and/or leaf herbivory while varying the nutrient availability. Simulated leaf herbivory was more detrimental to the plant than simulated root herbivory, reducing both above- and below-ground tissue production. Leaf demography was unaffected by either simulated herbivory treatment. There was some compensatory growth following simulated leaf and root herbivory, but only the root compartment responded to increased nutrient availability. Simulated leaf herbivory increased leaf transpiration and reduced stomatal resistance, suggesting increased carbon fixation. The unexpected finding of the experiment was the absence of interactions among factors (genotype, nutrient availability and type of tissue damage) on the compensatory response of S. planifolia. These factors thus have additive effects on the species' compensatory ability.  相似文献   

16.
Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs belowground. Here, we tested the hypothesis that plant tolerance and defense following shoot damage or root herbivory depends on plant age.  相似文献   

17.
The alkaloidal responses of wild tobacco to real and simulated herbivory   总被引:10,自引:0,他引:10  
Ian T. Baldwin 《Oecologia》1988,77(3):378-381
Summary I compared the induced alkaloidal response in undamaged leaves of plants subjected to herbivory by the larvae of Manduca sexta and to different simulations of this herbivory; all herbivory treatments removed similar amounts of leaf mass. Although larval feeding induced a significant increase (2.2x) in alkaloid concentrations compared to undamaged plants, the alkaloid responses to larval feeding were significantly lower than the responses to an herbivory simulation (4x controls) which involved removing the same amount of leaf area from the same positions on the leaf, over a similar time period. Moreover, another herbivory simulation, identical in amount of leaf mass removed and duration of damage to the larval feeding, but without regard to spatial array of leaf damage, resulted in an alkaloidal response (5.5x controls) higher still than the previous herbivory simulation. In a second experiment the importance of leaf vein damage on the induced alkaloidal response was examined. Here, leaf removal that involved cutting leaf tissues from between secondary veins before removing the midrib, resulted in alkaloidal responses that were significantly lower (1.7x controls) than responses from leaf removal that involved cutting both veins and midribs along with the intervein tissues (2.6x controls). Vein damage alone did not produce a significant response. These results indicate that herbivory is difficult to simulate: that how a leaf is damaged can be as important as the magnitude of leaf damage in determining a plant's response to damage.  相似文献   

18.
Species‐specific responses to climate change will lead to changes in species interactions across multiple trophic levels. Interactions between plants and their insect herbivores, in particular, may become increasingly disrupted if mobile herbivores respond more rapidly to climatic change than their associated host plants. We present a multispecies transplant experiment aimed at assessing potential climatic impacts on patterns of leaf herbivory. Four shrubby understorey plant species were transplanted outside their native range into a climate 2.5°C warmer in annual mean temperature. After 12 months, we assessed the types and amount of herbivore leaf damage, compared with plants transplanted to a control site within their native range. The overall amount of foliage loss to herbivores ranged from approximately 3–10% across species and sites, a range consistent with most estimates of leaf loss in other studies. The most common types of leaf damage were sucking and chewing and this pattern was consistent for all four plant species at all sites. There were no significant differences in levels and patterns of herbivory between control and warm sites for three out of four plant species. This suggests that with moderate climate warming, most herbivory will continue to be dominated by chewers and suckers, and that the overall level of foliage loss will be similar to that experienced presently.  相似文献   

19.
植物对昆虫产卵刺激产生的防御反应不仅可以直接抑制卵的发育,还可以为防御下一步若虫/幼虫带来的危害做准备。对褐飞虱产卵处理后水稻植株内一氧化氮(NO)合成的关键酶-硝酸还原酶基因的表达量和NO含量进行测定,对比褐飞虱取食和机械损伤处理,结果显示褐飞虱产卵能够诱导水稻硝酸还原酶基因的表达和NO的生成。处理后12 h,水稻硝酸还原酶基因表达量显著高于取食和和机械损伤处理;12-24 h产卵诱导的NO含量显著高于对照和机械损伤组水稻。褐飞虱产卵诱导水稻启动NO合成关键基因的表达和物质合成表明,与取食危害类似,水稻同样会对褐飞虱产卵刺激产生响应,诱导NO升高,启动相应的植物防御体系。  相似文献   

20.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号