首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Rand DM  Fry A  Sheldahl L 《Genetics》2006,172(1):329-341
Under the mitochondrial theory of aging, physiological decline with age results from the accumulated cellular damage produced by reactive oxygen species generated during electron transport in the mitochondrion. A large body of literature has documented age-specific declines in mitochondrial function that are consistent with this theory, but relatively few studies have been able to distinguish cause from consequence in the association between mitochondrial function and aging. Since mitochondrial function is jointly encoded by mitochondrial (mtDNA) and nuclear genes, the mitochondrial genetics of aging should be controlled by variation in (1) mtDNA, (2) nuclear genes, or (3) nuclear-mtDNA interactions. The goal of this study was to assess the relative contributions of these factors in causing variation in Drosophila longevity. We compared strains of flies carrying mtDNAs with varying levels of divergence: two strains from Zimbabwe (<20 bp substitutions between mtDNAs), strains from Crete and the United States (approximately 20-40 bp substitutions between mtDNAs), and introgression strains of Drosophila melanogaster carrying mtDNA from Drosophila simulans in a D. melanogaster Oregon-R chromosomal background (>500 silent and 80 amino acid substitutions between these mtDNAs). Longevity was studied in reciprocal cross genotypes between pairs of these strains to test for cytoplasmic (mtDNA) factors affecting aging. The intrapopulation crosses between Zimbabwe strains show no difference in longevity between mtDNAs; the interpopulation crosses between Crete and the United States show subtle but significant differences in longevity; and the interspecific introgression lines showed very significant differences between mtDNAs. However, the genotypes carrying the D. simulans mtDNA were not consistently short-lived, as might be predicted from the disruption of nuclear-mitochondrial coadaptation. Rather, the interspecific mtDNA strains showed a wide range of variation that flanked the longevities seen between intraspecific mtDNAs, resulting in very significant nuclear x mtDNA epistatic interaction effects. These results suggest that even "defective" mtDNA haplotypes could extend longevity in different nuclear allelic backgrounds, which could account for the variable effects attributable to mtDNA haplogroups in human aging.  相似文献   

2.
Under maternal inheritance, mitochondrial genomes are prone to accumulate mutations that exhibit male‐biased effects. Such mutations should, however, place selection on the nuclear genome for modifier adaptations that mitigate mitochondrial‐incurred male harm. One gene region that might harbor such modifiers is the Y‐chromosome, given the abundance of Y‐linked variation for male fertility, and because Y‐linked modifiers would not exert antagonistic effects in females because they would be found only in males. Recent studies in Drosophila revealed a set of nuclear genes whose expression is sensitive to allelic variation among mtDNA‐ and Y‐haplotypes, suggesting these genes might be entwined in evolutionary conflict between mtDNA and Y. Here, we test whether genetic variation across mtDNA and Y haplotypes, sourced from three disjunct populations, interacts to affect male mating patterns and fertility across 10 days of early life in D. melanogaster. We also investigate whether coevolved mito‐Y combinations outperform their evolutionarily novel counterparts, as predicted if the interacting Y‐linked variance is comprised of modifier adaptations. Although we found no evidence that coevolved mito‐Y combinations outperformed their novel counterparts, interactions between mtDNA and Y‐chromosomes affected male mating patterns. These interactions were dependent on male age; thus male reproductive success was shaped by G × G × E interactions.  相似文献   

3.
The current study compares the nucleotide variation among 22 complete mitochondrial genomes of the three distinct Drosophila simulans haplotypes with intron 1 of the alcohol dehydrogenase-related locus. This is the first study to investigate the sequence variation of multiple complete mitochondrial genomes within distinct mitochondrial haplotypes of a single species. Patterns of variation suggest distinct forces are influencing the evolution of mitochondrial DNA (mtDNA) and autosomal DNA in D. simulans. First, there is little variation within each mtDNA haplotype but strong differentiation among them. In contrast, there is no support for differentiation of the mitochondrial haplotypes at the autosomal locus. Second, there is a significant deficiency of mitochondrial variation in each haplotype relative to the autosomal locus. Third, the ratio of nonsynonymous to synonymous substitutions is not equal in all branches of the well-resolved phylogeny. There is an excess of nonsynonymous substitutions relative to synonymous substitutions within each D. simulans haplotype. This result is similar to that previously observed within the mtDNA of distinct species. A single evolutionary force may be causally linked to the observed patterns of mtDNA variation—a rickettsia-like microorganism, Wolbachia pipientis, which is known to directly influence mitochondrial evolution but have a less direct influence on autosomal loci. Received: 16 September 1999 / Accepted: 14 March 2000  相似文献   

4.
The study of speciation has advanced considerably in the last decades because of the increased application of molecular tools. In particular, the quantification of gene flow between recently diverged species could be addressed. Drosophila simulans and Drosophila mauritiana diverged, probably allopatrically, from a common ancestor approximately 250,000 years ago. However, these species share one mitochondrial DNA (mtDNA) haplotype indicative of a recent episode of introgression. To study the extent of gene flow between these species, we took advantage of a large sample of D. mauritiana and employed a range of different markers, i.e. nuclear and mitochondrial sequences, and microsatellites. This allowed us to detect two new mtDNA haplotypes (MAU3 and MAU4). These haplotypes diverged quite recently from haplotypes of the siII group present in cosmopolitan populations of D. simulans. The mean divergence time of the most diverged haplotype (MAU4) is approximately 127,000 years, which is more than 100,000 years before the assumed speciation time. Interestingly, we also found some evidence for gene flow at the nuclear level because an excess of putatively neutral loci shows significantly reduced differentiation between D. simulans and D. mauritiana. Our results suggest that these species are exchanging genes more frequently than previously thought.  相似文献   

5.
Mitochondrial DNA usually shows low sequence variation within and high sequence divergence among species, which makes it a useful marker for phylogenetic inference and DNA barcoding. A previous study on the common redstart (Phoenicurus phoenicurus) revealed two very different mtDNA haplogroups (5% K2P distance). This divergence is comparable to that among many sister species; however, both haplogroups coexist and interbreed in Europe today. Herein, we describe the phylogeographic pattern of these lineages and test hypotheses for how such high diversity in mtDNA has evolved. We found no evidence for mitochondrial pseudogenes confirming that both haplotypes are of mitochondrial origin. When testing for possible reproductive barriers, we found no evidence for lineage‐specific assortative mating and no difference in sperm morphology, indicating that they are not examples of cryptic species, nor likely to reflect the early stages of speciation. A gene tree based on a short fragment of cytochrome c oxidase subunit 1 from the common redstart and 10 other Phoenicurus species, showed no introgression from any of the extant congenerics. However, introgression from an extinct congeneric cannot be excluded. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. Sympatric mtDNA divergences are relatively rare in birds, but the fact that they occur argues against the use of threshold mtDNA divergences in species delineation.  相似文献   

6.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

7.
Mussels of the genus Mytilus have two types of mitochondrial DNA (mtDNA). The M type is transmitted paternally and the F type is transmitted maternally. RFLP analysis is used to assess phylogenetic relationships and nucleotide diversity and divergence for both mtDNA genomes in European populations of M. edulis and Atlantic and Mediterranean forms of M. galloprovincialis. Ten restriction endonucleases were used to assay variation in regions of the ND2 and COIII genes for a total of 77 individuals. F and M genomes show a concordant phylogenetic split into two major divergent clades, one specific to Mediterranean M. galloprovincialis and the other containing haplotypes from the three taxa. For both genomes, the geographical distribution of mtDNA variation suggests: (i) extensive levels of mtDNA introgression; (ii) asymmetric mtDNA gene flow from Atlantic to Mediterranean populations; and (iii) recurrent historical hybridization events. Significantly higher mtDNA diversity and divergence are observed for the M than F genome in all three Mytilus taxa, although the evolutionary forces responsible for these differences cannot be resolved. The extensive mtDNA gene flow between European Mytilus taxa conflicts with the restricted mtDNA introgression observed in American mussels , implying geographical variation in the nature of nuclear/mtDNA interactions regulating biparental inheritance.  相似文献   

8.
Neutral and Non-Neutral Evolution of Drosophila Mitochondrial DNA   总被引:4,自引:4,他引:4  
D. M. Rand  M. Dorfsman    L. M. Kann 《Genetics》1994,138(3):741-756
To test hypotheses of neutral evolution of mitochondrial DNA (mtDNA), nucleotide sequences were determined for 1515 base pairs of the NADH dehydrogenase subunit 5 (ND5) gene in the mitochondrial DNA of 29 lines of Drosophila melanogaster and 9 lines of its sibling species Drosophila simulans. In contrast to the patterns for nuclear genes, where D. melanogaster generally exhibits much less nucleotide polymorphism, the number of segregating sites was slightly higher in a global sample of nine ND5 sequences in D. melanogaster (s = 8) than in the nine lines of D. simulans (s = 6). When compared to variation at nuclear loci, the mtDNA variation in D. melanogaster does not depart from neutral expectations. The ND5 sequences in D. simulans, however, show fewer than half the number of variable sites expected under neutrality when compared to sequences from the period locus. While this reduction in variation is not significant at the 5% level, HKA tests with published restriction data for mtDNA in D. simulans do show a significant reduction of variation suggesting a selective sweep of variation in the mtDNA in this species. Tests of neutral evolution based on the ratios of synonymous and replacement polymorphism and divergence are generally consistent with neutral expectations, although a significant excess of amino acid polymorphism within both species is localized in one region of the protein. The rate of mtDNA evolution has been faster in D. melanogaster than in D. simulans and the population structure of mtDNA is distinct in these species. The data reveal how different rates of mtDNA evolution between species and different histories of neutral and adaptive evolution within species can compromise historical inferences in population and evolutionary biology.  相似文献   

9.
Dean MD  Ballard KJ  Glass A  Ballard JW 《Genetics》2003,165(4):1959-1969
Drosophila simulans is hypothesized to have originated in continental East Africa or Madagascar. In this study, we investigated evolutionary forces operating on mitochondrial DNA (mtDNA) in populations of D. simulans from Zimbabwe, Malawi, Tanzania, and Kenya. Variation in mtDNA may be affected by positive selection, background selection, demographic history, and/or any maternally inherited factor such as the bacterial symbiont Wolbachia. In East Africa, the wRi and wMa Wolbachia strains associate with the siII or siIII mitochondrial haplogroups, respectively. To ask how polymorphism relates to Wolbachia infection status, we sequenced 1776 bp of mitochondrial DNA and 1029 bp of the X-linked per locus from 79 lines. The two southern populations were infected with wRi and exhibited significantly reduced mtDNA variation, while Wolbachia-uninfected siII flies from Tanzania and Kenya showed high levels of mtDNA polymorphism. These are the first known populations of D. simulans that do not exhibit reduced mtDNA variation. We observed no mitochondrial variation in the siIII haplogroup regardless of Wolbachia infection status, suggesting positive or background selection. These populations offer a unique opportunity to monitor evolutionary dynamics in ancestral populations that harbor multiple strains of Wolbachia.  相似文献   

10.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   

11.
12.
Pinus species exhibit paternal chloroplast inheritance and maternal mitochondrial inheritance. This independent inheritance of two cytoplasmic genomes provides an exceptional environment for discriminating female (seeds) and male (pollen) components of gene flow across hybridizing species. We obtained mitochondrial genetic markers diagnostic toP. parviflora var.pentaphylla andP. pumila by PCR amplification of the intron ofnad1 on mtDNA, and examined the spatial-distribution pattern of the mtDNA haplotypes in a hybrid zone betweenP. parviflora var.pentaphylla andP. pumila in the Tanigawa Mountains of Japan. These data, in conjunction with previous information on cpDNA haplotypes and needle morphology, revealed contrastive patterns of introgression of two cytoplasmic genomes. CpDNA introgression has occurred uni-directionally fromP. parviflora var.pentaphylla toP. pumila. Conversely, mtDNA introgression has occurred in the opposite direction, fromP. pumila toP. parviflora var.pentaphylla. Levels of introgression are roughly equivalent for cpDNA and mtDNA. The contrastive spatial distribution pattern of cpDNA and mtDNA haplotypes could be caused by differential movement of seeds and pollen for interspecific genetic exchange.  相似文献   

13.
The temperature-dependent transmission of mitochondrial DNA (mtDNA) was investigated in heteroplasmic lines of Drosophila melanogaster established by germ-plasm transplantation. Using D. melanogaster, D. simulans and D. mauritiana as germ-plasm donors, five recipient-donor combinations of heteroplasmy, differing from those previously examined (Matsuura et al., 1991), were constructed. For intraspecific reciprocal combinations, donor mtDNA in one combination was retained at 25 degrees C but was almost lost by the tenth generation at 19 degrees C. In the reciprocal, the proportion of the same type of recipient mtDNA decreased more quickly at 19 degrees C than 25 degrees C. Decreasing rates at 19 degrees C in the reciprocals differed from each other. For interspecific combinations, two species were used as germ-plasm donors. Donor mtDNA derived from D. simulans was lost at both temperatures and the rate of decrease was greater at 19 degrees C than 25 degrees C. The proportion of donor mtDNA derived from D. mauritiana increased at a greater rate at 25 degrees C than 19 degrees C when using two different strains of D. melanogaster as recipients. These results suggest that both the nuclear and two types of mitochondrial genomes are involved in the selective transmission of mtDNA.  相似文献   

14.
Unraveling Selection in the Mitochondrial Genome of Drosophila   总被引:15,自引:6,他引:9  
JWO. Ballard  M. Kreitman 《Genetics》1994,138(3):757-772
We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral' molecular marker.  相似文献   

15.
何芳  姜爱兰  李神斌  吴运梅  王国秀 《昆虫学报》2009,52(10):1083-1089
为完善昆虫病原索科线虫线粒体基因组全序列数据库, 更系统地研究其基因组特征和系统演化规律, 进而为发挥该线虫生防潜力打下基础, 我们开展了中华卵索线虫Ovomermis sinensis线粒体全基因组的研究。该研究通过线粒体基因组滚环复制及酶切图谱, 揭示了中华卵索线虫线粒体基因组具有种内遗传多态性, 即群体中单体线虫具有独特的酶切条带, 且条带累加之和变化范围较大, 为16.5~24.5 kb。为进一步了解线粒体基因组多态性特征及产生的分子机制, 采用两步长PCR方法对2条代表性成虫线粒体基因组进行了测序及拼接, 得其全长分别为18 864和16 777 bp。对这2条序列的比对表明, 线粒体基因组中位于ND2和ND4之间的可变区域, 不仅基因排列顺序不同, 且存在ND3基因重复现象, 这是导致中华卵索线虫线粒体基因组呈现多态性的主要原因。通过对以上研究结果的分析及与GenBank中已有的6种索科线虫线粒体基因组序列进行比对, 概括出其线粒体基因组基本特点: ①线粒体基因排列顺序各不相同;②部分线虫线粒体基因存在重复现象, 且重复次数不同;③线粒体基因组大小存在很大差异。  相似文献   

16.
Interspecific hybridization provides the unique opportunity for species to tap into genetic variation present in a closely related species and potentially take advantage of beneficial alleles. It has become increasingly clear that when hybridization occurs, mitochondrial DNA (mtDNA) often crosses species boundaries, raising the possibility that it could serve as a recurrent target of natural selection and source of species' adaptations. Here we report the sequences of 46 complete mitochondrial genomes of Drosophila yakuba and Drosophila santomea, two sister species known to produce hybrids in nature (~3%). At least two independent events of mtDNA introgression are uncovered in this study, including an early invasion of the D. yakuba mitochondrial genome that fully replaced the D. santomea mtDNA native haplotypes and a more recent, ongoing event centred in the hybrid zone. Interestingly, this recent introgression event bears the signature of Darwinian natural selection, and the selective haplotype can be found at low frequency in Africa mainland populations of D. yakuba. We put forward the possibility that, because the effective population size of D. santomea is smaller than that of D. yakuba, the faster accumulation of mildly deleterious mutations associated with Muller's ratchet in the former species may have facilitated the replacement of the mutationally loaded mitochondrial genome of Dsantomea by that of D. yakuba.  相似文献   

17.
Abstract. We investigate the diversity of the North American tiger moth genus Grammia Rambur (Lepidoptera: Noctuidae) by comparing mitochondrial DNA (mtDNA) ‘barcode’ fragments of cytochrome oxidase I with non‐molecular characters such as morphology, ecology, behaviour and distribution. Mitochondrial DNA genealogy is strikingly at odds with morpho‐species taxonomy for most of the 28 sampled species, as haplotypic polyphyly not only is taxonomically widespread, but involves multiple shared haplotypes among two to four species. Morpho‐ecological traits show that those species sharing haplotypes are often not closely related. Furthermore, high mtDNA divergences occur within species. Haplotypic variation is highly discordant with species taxonomy, but variation at a continental scale reveals significant geographic structuring of haplogroups, transcending morpho‐species boundaries. A nested clade analysis and comparison of non‐molecular with mtDNA data indicate that most discordance between mtDNA and taxonomy in Grammia is explained best by taxonomically and geographically widespread ongoing hybridization events resulting in mtDNA introgression. We hypothesize that broad areas of sympatry, interspecifically compatible genitalic structure, and species overlap in pheromone components facilitate hybridization, with disparate interspecies abundances promoting mitochondrial introgression. The molecular evolution of Grammia challenges the view that interspecific gene exchange occurs rarely and is restricted to recently diverged species. These results show the value of mtDNA in detecting cryptic hybridization, while highlighting the inherent dangers of drawing taxonomic conclusions based solely on mtDNA.  相似文献   

18.
Association between chloroplast and mitochondrial lineages in oaks   总被引:3,自引:1,他引:2  
Patterns of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) variation were studied in 378 populations of oak trees sampled throughout the southern half of France. Six cpDNA haplotypes detected in a previous European survey and three new cpDNA haplotypes were found in this region. Two mitochondrial polymorphisms detected earlier by restriction analysis of PCR-amplified fragments alone, or in combination with single-strand conformation polymorphism (SSCP), were compared with the cpDNA data. Sequencing revealed the nature of the two mitochondrial mutations: a single-base substitution and a 4-bp inversion associated with a 22-bp hairpin secondary structure. The single-base substitution was then analyzed by allele-specific amplification. Results for the two cytoplasmic genomes were combined, which allowed the identification of 12 cpDNA-mtDNA haplotypes. The 4-bp mtDNA inversion has appeared independently in different cpDNA lineages. Given the peculiar nature of this mtDNA mutation, we suggest that intramolecular recombination leading to repeated inversions of the 4-bp sequence (rather than paternal leakage of one of the two genomes) is responsible for this pattern. Furthermore, the geographic locations of the unusual cpDNA-mtDNA associations (due to the inversion) usually do not match the zones of contact between divergent haplotypes. In addition, in southern France, the groupings of populations based on the mtDNA substitution were strictly congruent with those based on cpDNA. Because many populations that are polymorphic for both cpDNA and mtDNA have remained in contact since postglacial recolonization in this area without producing any new combination of cytoplasms involving the mitochondrial substitution, we conclude that paternal leakage is not a significant factor at this timescale. Such results confirm and expand our earlier conclusions based on controlled crosses.   相似文献   

19.
Abstract The cytochrome c oxidase enzyme (COX) is comprised of 10 nuclear-encoded subunits and three mito-chondrial-encoded subunits in close physical association in the inner mitochondrial membrane. COX passes electrons from cytochrome c to molecular oxygen and pumps protons into the inner mitochondrial space for ATP production. Selection on nuclear-mitochondrial interactions within species should lead to coadaptation of the proteins comprising this important enzyme. Under this model, there should be relatively little disruption of COX activity when mitochondrial genomes are crossed among strains within species. A more pronounced disruption of activity is expected when the mitochondrial genome is expressed in the nuclear background of a different species. We test these hypotheses in Drosophila using hybridization and backcrossing among lines of D. simulans and D. mauritiana. Disrupted cytonuclear genotypes were constructed using backcrosses between two lines of D. simulans (siI and si II ) that introduced each divergent mitochondrial DNA (mtDNA) into each nuclear background due to maternal inheritance of mtDNA. Similar crosses were used to introduce eachD. simulans mtDNA into the D. mauritiana maI nuclear background. Reconstituted cytonuclear control genotypes were constructed by backcrossing the initial F1 females to males of the maternal genotype. COX enzyme activities were compared among these disrupted and reconstituted backcross genotypes within and between species. The disruption effect on COX activity was restricted to males of interspecific genotypes. These data support the coadaptation hypothesis and are consistent with predictions that the evolution of modifiers of male mitochondrial dysfunction is hindered by the maternal inheritance of mtDNA. New sequence data for nuclear encoded subunits of COX identified amino acids that may play a role in the disruption effect.  相似文献   

20.
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co‐evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号