首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent field studies have demonstrated that many bird species practice intra-specific brood parasitism. They lay eggs in the nests of other individuals of the same species, let the foster parents rear their offspring and avoid the cost of parental care. It has been shown that many birds, including starlings, swallows and geese, practice intra-specific brood parasitism in various forms. Intra-specific brood parasitism can be viewed in terms of optimal resource allocation: how many eggs should be put in the nests of other individuals under the risk of being parasitized by others. The situation here is a game, because the fitness of a parasitic individual depends on how other individuals behave (how many individuals practice parasitism and to what extent). The ecology of intra-specific brood parasitism has been investigated extensively by field ornithologists recently and it is full of material for modeling population/evolutionary biology. In this paper, I present a simple individual-based model to challenge the resource allocation problem in intra-specific brood parasitism. Previous theoretical studies of intra-specific brood parasitism have been based on ESS or quantitative genetics models, where a population is implicitly assumed to be homogeneous and the distribution form of the trait being studied (the allocation rate or the number of eggs laid parasitically) is inherently monomorphic. This paper aims to explore the evolution of intra-specific brood parasitism without these restrictions. In the model, an individual is assigned a strategy, an allocation ratio of eggs that are laid parasitically in the nests of other individuals, and the strategy is inherited by offspring either asexually or sexually. Based on the simulation analysis, the evolution of the allocation rate (the extent of intra-specific brood parasitism) is discussed. The extension of this model to a tractable analytical model is also discussed.  相似文献   

2.
Conspecific brood parasitism (CBP), defined as parasitic laying of eggs in a conspecific nest without providing parental care, occurs in insects, fishes, amphibians, and many birds. Numerous factors have been proposed to influence the evolution of CBP, including nest site limitation; effects of brood size, laying order, or parasitic status on offspring survival; randomness of parasitic egg distribution; adult life-history trade-offs; and variation in parental female quality or risk of nest predation. However, few theoretical studies consider multiple possible types of parasitism or the interplay between evolution of parasitism and population dynamics. We review existing theory of CBP and develop a synthetic modeling approach to ask how best-of-a-bad job parasitism, separate-strategies parasitism (in which females either nest or parasitize), and joint-strategies parasitism (in which females can both nest and parasitize) differ in their evolutionary conditions and impacts on population dynamics using an adaptive dynamics framework including multivariate traits. CBP can either stabilize or destabilize population dynamics in different scenarios, and the role of comparable parameters on evolutionarily stable strategy parasitism rate, equilibrium population size, and population stability can differ for the different modes of parasitism.  相似文献   

3.
Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi‐broodedness), and utilize the literature on host–pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios.  相似文献   

4.
This paper investigates the effect of brood parasitism in a dung beetle assemblage in an arid region of Spain. The study was conducted during the spring season (March-May 1994-1998) using mesh cylinders buried into the ground, filled with sand and with sheep dung on top. We quantified the proportion of nests containing larvae of parasitic beetles and their effect on host larvae survival. Experiments on the effect of parasitic larvae on host-larvae survival were conducted by placing scarab brood masses (raised from captive scarabs in the laboratory) in containers with and without aphodiid larvae. During the spring, dung desiccation is rapid, preventing aphodiids nesting in the dung, and forcing these species to adopt brood parasitism as a nesting strategy. Parasitic aphodiids were found in 12-47% of scarab nests of three species. The incidence of brood parasitization was positively related with the number of brood masses contained in the nests, being also higher in the most abundant species. Field data and experiments showed that brood parasites significantly reduced host larvae survival from 74.8% in non-parasitized nests to 8.8% in parasitized nests. Because different rates of nest parasitization and mortality were caused by parasites, brood parasitism had a differential effect on different host species. Thus, brood parasitism constitutes an important mortality factor reducing the reproductive success of the host species and potentially affecting the beetle abundance in the area.  相似文献   

5.
【目的】独栖蜂黄缘蜾蠃Anterhynchium flavomarginatum是农林业害虫的重要天敌之一。本研究旨在明确黄缘蜾蠃的产卵策略及其对寄生胁迫的行为响应,为农林业害虫生物防治提供基础依据。【方法】2018-2020年,在广东车八岭国家级自然保护区及周边区域使用根据公里网格方案(共计100个调查网格,网格大小为1 km2)设置的人工巢管调查了黄缘蜾蠃的产卵策略及其与寄生胁迫之间的关系。通过连续采集该蜂的筑巢巢管并饲养调查,我们详细记录了每根巢管的孵育室数量及其子代在巢管里的性比和被寄生情况,并测量了每根巢管的长度、内径和巢室结构特征。【结果】2018-2020年中,我们获得了黄缘蜾蠃筑巢的巢管达3 733根和孵育室9 269个,其中被寄生的孵育室达1 420个。黄缘蜾蠃在单根巢管内平均产2.50±1.25枚卵,构建非孵育室1.84±1.14个,其子代性比偏雄(雄∶雌=1.98∶1),并倾向于在巢管内端的孵育室产雌性卵,在外端的孵育室产雄性卵。结构方程模型分析结果显示,每根巢管的巢管内径和长度均显著地正影响孵育室数量,巢管长度也显著地正影响非孵育室数量,而孵育室数量和非孵育室数量均显著地负影响被寄生率。对子代在巢管内的性别排列模式进行meta分析表明,巢管最内端子代雌性数量显著高于最外端的,而巢管最内端孵育室的被寄生率显著低于最外端的。【结论】结果表明黄缘蜾蠃在寄生胁迫下通过在巢管内多产卵以降低被寄生风险,并可通过调节子代的性别分配模式以提高雌性子代的存活率,从而有助于提高其繁殖适合度。  相似文献   

6.
Cuckoos, cowbirds and hosts: adaptations, trade-offs and constraints   总被引:1,自引:0,他引:1  
The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite-host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe.  相似文献   

7.
The evolution of obligate interspecific brood parasitism in birds   总被引:2,自引:1,他引:1  
We present a simple analytical model to investigate the conditionsfor the evolution of obligate interspecific brood parasitismin birds, based on clutch size optimization, when birds canlay more eggs than their optimal clutch size. The results showthat once intraspecific parasitism has appeared (i.e., femalesstart to spread their eggs over their own and other nests) the evolutionarily stable number of eggs laid in its own nest decreases.Two possible ESSs exist: (1) either the evolutionarily stablenumber of eggs laid in its own nest is larger than zero, anda fraction of the total number of eggs is laid parasitically(i.e., intraspecific parasitism); and (2) either the evolutionarilystable number of eggs laid in its own nest is zero and all eggs are laid parasitically. Since all females lay parasitically,this could favor the evolution of obligate interspecific broodparasitism. The key parameter allowing the shift from intraspecificto obligate interspecific parasitism is the intensity of density-dependentmortality within broods (i.e., nestling competition). Strongnestling competition, as in altricial species, can lead toan ESS where all eggs are laid parasitically. Altricial speciesare, therefore, predicted to evolve more easily toward obligate interspecific parasitism than precocial species. These predictionsfit the observed distribution of brood parasitism in birds,where only one species out of 95 obligate interspecific parasitesexhibits a precocial mode of development. Different nestlingsurvival functions provided similar findings (i.e., obligatebrood parasitism is more likely to evolve in altricial species),suggesting that these results are robust with respect to themain assumption of the model.  相似文献   

8.
Jesús M. Avils 《Oikos》2019,128(3):338-346
Avian brood parasitism is a potent selective agent modulating host behaviors and morphology, although its role in determining diversification of avian breeding strategies remains elusive. Hitherto, the study of selection of brood parasites on host breeding strategies has been based on single reproductive trait approaches, which neglect that evolutionary responses to brood parasites may involve co‐ordinated changes in several aspects of reproduction. Here I consider covariation among reproductive traits to test whether parental breeding strategies of hosts of brown headed cowbird (BHC hereafter) in North America and the common cuckoo (CC hereafter) in Europe, two parasites with contrasting level of virulence, have evolved in response to brood parasitism. The effect of parasitism on avian breeding strategies differed between continents. Long term exposure to BHC parasitism selected for a lower breeding investment in North America, but not so CC parasitism in Europe. These results suggest a key role of parasite virulence on the evolution of avian breeding strategies and that brood parasitism has selected for a co‐ordinated breeding strategy of reducing parasitism costs by shortening and fractioning reproductive events within a single season in North America.  相似文献   

9.
The evolution of parasitic behavior may catalyze the exploitation of new ecological niches yet also binds the fate of a parasite to that of its host. It is thus not clear whether evolutionary transitions from free‐living organism to parasite lead to increased or decreased rates of diversification. We explore the evolution of brood parasitism in long‐tongued bees and find decreased rates of diversification in eight of 10 brood parasitic clades. We propose a pathway for the evolution of brood parasitic strategy and find that a strategy in which a closed host nest cell is parasitized and the host offspring is killed by the adult parasite represents an obligate first step in the appearance of a brood parasitic lineage; this ultimately evolves into a strategy in which an open host cell is parasitized and the host offspring is killed by a specialized larval instar. The transition to parasitizing open nest cells expanded the range of potential hosts for brood parasitic bees and played a fundamental role in the patterns of diversification seen in brood parasitic clades. We address the prevalence of brood parasitic lineages in certain families of bees and examine the evolution of brood parasitism in other groups of organisms.  相似文献   

10.
Mode of development in birds helps determine the form of brood parasitism a species exhibits. Most knowledge of precocial brood parasites comes from a single avian family, the waterfowl (Anatidae: Anseriformes). Here we review cases of interspecific brood parasitism (IBP) in a second group of precocial birds, the order Galliformes. IBP is uncommon but taxonomically widespread, occurring in at least 11 species and in four of five galliform families. By far the most common brood parasite is the Ring-necked Pheasant Phasianus colchicus . Hosts were generally other ground-nesting precocial species. It is unclear whether the absence of IBP in the Cracidae (Guans, Curassows, and Chachalacas) is due to the paucity of research on tropical gamebirds or because tropical birds such as the Cracidae may be less likely to practise IBP. Galliform birds mirror the trend found in ducks in which virtually all species that parasitize heterospecifics are also conspecific brood parasites (CBP). This association supports the hypothesis that IBP as an adaptive tactic or strategy may evolve from CBP. Alternatively, or additionally, egg-dumping may represent reproductive error on the part of females, such that concordance between CBP and IBP could be a byproduct of having sufficient knowledge of breeding biology only for a subset of galliform species.  相似文献   

11.
Behavioural studies have led to the perception that lekking species experience a high male reproductive skew as a consequence of females’ selective mate choice. In addition, observations suggest that females copulate only once and therefore polyandry seems unlikely as females are supposed to choose the best male available. In order to analyse the mating strategy of the Houbara bustard, an endangered lekking species under reinforcement in eastern Morocco, we used microsatellite data to perform paternity analyses. None of our observations followed common expectations under a lek mating system: we found no male reproductive skew suggesting no apparent selective female mate choice and no apparent male benefit from lekking. In contrast, a high level of polyandry (60 % of the nests) was recorded suggesting that sperm competition may operate. In addition, we present another case of conspecific brood parasitism in a lekking species and this was an unexpected alternative strategy for a species presenting high parental cost and low fecundity. The increasing number of studies contradicting common assumptions on lekking species suggests that alternative breeding strategies such as males pursuing an off‐lek mating strategy, female polyandry and even conspecific brood parasitism might be more widespread in lekking species than previously thought.  相似文献   

12.
Abstract.  1. Brood parasitism occurs when individuals parasitise each others' investment into parental care, and has been documented primarily as an interspecific interaction. Intraspecific brood parasitism, in contrast, is often difficult to detect and quantify, and evidence for it is comparatively scarce. The present study documents the occurrence of intraspecific brood parasitism by females of the tunnelling dung beetle Onthophagus taurus , and investigates the contributions of two variables to the propensity of female brood parasitism: female body size and dung desiccation rate.
2. Female O. taurus were found to routinely utilise brood balls made by conspecific females as food provisions for their own offspring.
3. Contrary to expectations, large and small females did not differ in the likelihood of engaging in brood-parasitic behaviour.
4. Dung desiccation rate appeared to influence likelihood of brood parasitism. Females that were given access to rapidly drying dung were significantly more likely to detect and utilise brood balls produced by conspecific females.
5. While interspecific brood parasitism has been documented in dung beetles before, the present study is among the first to present evidence for intraspecific brood parasitism as an alternative reproductive tactic of female dung beetles. Results are discussed in the context of the evolutionary ecology of onthophagine beetles.  相似文献   

13.
The allocation of resources to young that will ultimately beleft to die appears counterintuitive. Yet obligate brood reductionhas evolved in a number of species, despite the waste of reproductiveinvestment this may incur. Here we test whether brood parasitismcould be one factor leading to the evolution of obligate broodreduction because surplus eggs in the nest during incubationoffer some protection from the costs of parasitism. Surpluseggs could benefit females in two ways. First, additional eggsmay protect against the direct costs of parasitism by facilitatingrecognition and removal of parasitic eggs with greater accuracy.Second, additional eggs may protect against the indirect costsof parasitism as parasites often damage or remove host eggswhen entering the host nest; surplus eggs may be an essentialinsurance strategy against this damage. We test these possibilitiesin the Montezuma Oropendola (Psarocolius Montezuma), a speciesexperiencing high levels of parasitism by Giant Cowbirds (Scaphiduraoryzivora) throughout their range. Overall rejection rates ofcowbird eggs were high (72%), and experimental addition of parasiticeggs to empty, one-, and two-egg nests demonstrated that recognitionsuccess was unaffected by the presence of additional host eggsfor comparison. However, the value of surplus eggs when oneegg was removed or damaged by a parasite was high; 31.6% ofsuccessful two-egg clutches lost a single egg during incubationand would have failed to produce a chick without a second egg.This was directly attributable to parasitism in at least 33%of all cases. Therefore, despite highly developed host defensesagainst direct costs of parasitism (recognition and removalof parasitic eggs), the associated indirect costs (egg damageand removal) could play an important role in selection for aclutch size that results in more chicks than can be raised.  相似文献   

14.
ABSTRACT.   High rates of brood parasitism are generally associated with agricultural landscapes, but recent evidence suggests that urbanization may also increase the likelihood of brood parasitism. I evaluated the extent to which brood parasitism by Brown-headed Cowbirds ( Molothrus ater ) was explained by differences in (1) body size of adult hosts, presumably relating to the ability to defend nest from cowbirds, (2) nest placement in substrate and relative to habitat edges, (3) habitat structure surrounding nests, (4) host density, (5) cowbird abundance, both absolute and relative to host numbers, (6) landscape composition, and (7) Julian date. From 2001 to 2006, I monitored nest fate and measured vegetation characteristics surrounding nests of Acadian Flycatcher ( Empidonax virescens ) breeding in mature riparian forests in central Ohio, USA. The likelihood that a nest would be parasitized was best explained by the number of understory stems surrounding the nest and, to a lesser extent, by the amount of urbanization in the surrounding 1-km-radius landscape. Parasitized nests were surrounded by 1.6 times more stems and nearly twice the amount of urbanization than nonparasitized nests. Numbers of understory stems were positively associated with increasing urbanization, primarily due to invasion of urban forests by Amur honeysuckle ( Lonicera maackii ). Thus, urban-associated changes in habitat characteristics around nests may be important contributors to the greater vulnerability of urban nests to brood parasitism than nests in more rural landscapes. This pattern suggests that ecological restoration, such as removing exotic shrubs, may be an effective strategy to ameliorate certain negative consequences of urbanization near wooded reserves.  相似文献   

15.
In many bird species, there is a floating population of females that are excluded from breeding because of competition for limited breeding resources. Female floaters may enhance their reproductive success by engaging in intraspecific brood parasitism. We studied female floaters in a population of European starlings, Sturnus vulgaris, in order to determine their identity and potential parasitic behaviour. Females were caught after being attracted to nestboxes with artificial nests during 1993-1995. None of the females was known to have a nest of her own at capture but 47% of the females either laid an egg in the nest or carried a fully developed egg within the reproductive tract, indicating that they were intraspecific brood parasites. The floating females were significantly younger and smaller than breeding females. Of 13 females equipped with radiotransmitters and followed daily, all but one started a breeding attempt of their own after 3-8 days and the majority settled as secondary females or mated with males where the original female had disappeared. This suggests that females that are unable to compete successfully for nest sites or males early in the breeding season may use intraspecific brood parasitism to enhance reproductive success during the period that they are constrained from breeding. The importance of settling rapidly because of a seasonal decline in reproductive success may also promote the evolution of intraspecific brood parasitism in the starling. The relative reproductive success of combining egg dumping with breeding compared with traditional breeding will depend on the costs of delaying breeding as well as the probability of finding a mate later in the breeding season. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

16.
Avian brood parasitism often has multiple negative effects on the reproductive success of the host. Most studies have focused on one or two of these effects, but rarely have they all been studied simultaneously for one species. I studied prothonotary warblers to quantify the effects of different intensities of (i.e. multiple) brood parasitism by brown-headed cowbirds, Molothrus ater, on the production of host and cowbird young and on the between-year returns of adult warblers. Host clutch size decreased with an increase in the number of cowbird eggs laid in nests. The hatching success of warbler and cowbird eggs decreased with increased cowbird eggs in nests, but was always higher for cowbird eggs than warbler eggs. The survival of warbler nestlings, but not cowbird nestlings, decreased with increased cowbird nestlings in the brood. An increase in the number of cowbird nestlings in broods resulted in a reduction in the average mass of warbler nestlings but not cowbird nestlings. The number of cowbird eggs or nestlings present did not affect nest predation, and the fledging of cowbirds did not influence the renesting interval of female warblers. In addition, the between-year returns of adult warblers were not negatively affected by brood parasitism. Decreased hatching success and nestling survival reduced the reproductive output of the warblers the most. These effects were substantial and appear to favour the evolution of behavioural responses that reduce the effects of brood parasitism on prothonotary warblers. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour   相似文献   

17.
Hoover JP  Reetz MJ 《Oecologia》2006,149(1):165-173
Interspecific brood parasitism in birds presents a special problem for the host because the parasitic offspring exploit their foster parents, causing them to invest more energy in their current reproductive effort. Nestling brown-headed cowbirds (Molothrus ater) are a burden to relatively small hosts and may reduce fledgling quality and adult survival. We documented food-provisioning rates of one small host, the prothonotary warbler (Protonotaria citrea), at broods that were similar in age (containing nestlings 8–9 days old), but that varied in composition (number of warbler and cowbird nestlings) and mass, and measured the effect of brood parasitism on offspring recruitment and adult returns in the host. The rate of food provisioning increased with brood mass, and males and females contributed equally to feeding nestlings. Controlling for brood mass, the provisioning rate was higher for nests with cowbirds than those without. Recruitment of warbler fledglings from unparasitized nests was 1.6 and 3.7 times higher than that of fledglings from nests containing one or two cowbirds, respectively. Returns of double-brooded adult male and female warblers decreased with an increase in the number of cowbirds raised, but the decrease was more pronounced in males. Reduced returns of warbler adults and recruitment of warbler fledglings with increased cowbird parasitism was likely a result of reduced survival. Cowbird parasitism increased the warblers’ investment in current reproductive effort, while exerting additional costs to current reproduction and residual reproductive value. Our study provides the strongest evidence to date for negative effects of cowbird parasitism on recruitment of host fledglings and survival of host adults.  相似文献   

18.
Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown‐headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely‐ or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites’ virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti‐parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts’ eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird‐ rather than a cuckoo‐type brood parasite. We suggest that, in addition to evolutionary lag and gape‐size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti‐parasite rejection strategies between many cuckoo‐ and cowbird‐hosts.  相似文献   

19.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

20.
Brood parasites such as the common cuckoo Cuculus canorus exploit the parental abilities of their hosts, hosts avoid brood parasitism and predation by showing specific behavior such as loss of feathers, emission of fear screams and contact calls, displaying wriggle behavior to avoid hosts or potential prey, pecking at hosts and prey, and expressing tonic immobility (showing behavior like feigning death or rapid escape from predators and brood parasites). These aspects of escape behavior are consistent for individuals but also among sites, seasons, and years. Escape behavior expressed in response to a broad range of cuckoo hosts and prey are consistently used against capture by humans, but also hosts and brood parasites and predators and their prey. An interspecific comparative phylogenetic analysis of escape behavior by hosts and their brood parasites and prey and their predators revealed evidence of consistent behavior when encountering potential parasites or predators. We hypothesize that personality axes such as those ranging from fearfulness to being bold, and from neophobic to curiosity response in brood parasites constitute important components of defense against brood parasitism that reduces the overall risk of parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号