首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we investigate the role of CHIP in a new CHIP-mutation related ataxia and the therapeutic potential of trehalose. The patient''s fibroblasts with a new form of hereditary ataxia, related to STUB1 gene (CHIP) mutations, and three age and sex-matched controls were treated with epoxomicin and trehalose. The effects on cell death, protein misfolding and proteostasis were evaluated. Recent studies have revealed that mutations in STUB-1 gene lead to a growing list of molecular defects as deregulation of protein quality, inhibition of proteasome, cell death, decreased autophagy and alteration in CHIP and HSP70 levels. In this CHIP-mutant patient fibroblasts the inhibition of proteasome with epoxomicin induced severe pathophysiological age-associated changes, cell death and protein ubiquitination. Additionally, treatment with epoxomicin produced a dose-dependent increase in the number of cleaved caspase-3 positive cells. However, co-treatment with trehalose, a disaccharide of glucose present in a wide variety of organisms and known as a autophagy enhancer, reduced these pathological events. Trehalose application also increased CHIP and HSP70 expression and GSH free radical levels. Furthermore, trehalose augmented macro and chaperone mediated autophagy (CMA), rising the levels of LC3, LAMP2, CD63 and increasing the expression of Beclin-1 and Atg5-Atg12. Trehalose treatment in addition increased the percentage of immunoreactive cells to HSC70 and LAMP2 and reduced the autophagic substrate, p62. Although this is an individual case based on only one patient and the statistical comparisons are not valid between controls and patient, the low variability among controls and the obvious differences with this patient allow us to conclude that trehalose, through its autophagy activation capacity, anti-aggregation properties, anti-oxidative effects and lack of toxicity, could be very promising for the treatment of CHIP-mutation related ataxia, and possibly a wide spectrum of neurodegenerative disorders related to protein disconformation.  相似文献   

2.
Protein aggregation has been proved to be a pathological basis accounting for neuronal death caused by either transient global ischemia or oxygen glucose deprivation (OGD), and inhibition of protein aggregation is emerging as a potential strategy of preventing brain damage. Trehalose was found to inhibit protein aggregation caused by neurodegenerative diseases via induction of autophagy, whereas its effect is still elusive on ischemia-induced protein aggregation. In this study, we investigated this issue by using rat model of transient global ischemia and SH-SY5Y model of OGD. We found that pretreatment with trehalose inhibited transient global ischemia-induced neuronal death in the hippocampus CA1 neurons and OGD-induced death in SH-SY5Y cells, which was associated with inhibition of the formation of ubiquitin-labeled protein aggregates and preservation of proteasome activity. In vitro study showed that the protection of trehalose against OGD-induced cell death and protein aggregation in SH-SY5Y cells was reversed when proteasome activity was inhibited by MG-132. Further studies revealed that trehalose prevented OGD-induced reduction of proteasome activity via suppression of both oxidative stress and endoplasmic reticulum stress. Particularly, our results showed that trehalose inhibited OGD-induced autophagy. Therefore, we demonstrated that proteasome dysfunction contributed to protein aggregation caused by ischemic insults and trehalose prevented protein aggregation via preservation of proteasome activity, not via induction of autophagy.  相似文献   

3.
Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals and abnormal neurotransmitter release. In this study, we have investigated whether partial proteasomal inhibition by epoxomicin, an ubiquitin proteasomal system (UPS) irreversible inhibitor, further aggravates the cellular effects of parkin suppression in midbrain neurons and glia. We observed that parkin null (PK‐KO) midbrain neuronal cultures are resistant to epoxomicin‐induced cell death. This resistance is due to increased GSH and DJ‐1 protein levels in PK‐KO mice. The treatment with epoxomicin increases, in wild type (WT) cultures, the pro‐apoptotic Bax/Bcl‐2 ratio, the phosphorylation of tau, and the levels of chaperones heat‐shock protein 70 and C‐terminal Hsc‐interacting protein, but none of these effects took place in epoxomicin‐treated PK‐KO cultures. Poly‐ubiquitinated proteins increased more in WT than in PK‐KO‐treated neuronal cultures. Parkin accumulated in WT neuronal cultures treated with epoxomicin. Markers of autophagy, such as LC3II/I, were increased in naïve PK‐KO cultures, and further increased after treatment with epoxomicin, implying that the blockade of the proteasome in PK‐KO neurons triggers the enhancement of autophagy. The treatment with l ‐buthionine‐S,R‐sulfoximine and the inhibition of autophagy, however, reverted the increase resistance to epoxomicin of the PK‐KO cultures. We also found that PK‐KO glial cells, stressed by growth in defined medium and depleted of GSH, were more susceptible to epoxomicin induced cell death than WT glia treated similarly. This susceptibility was linked to reduced GSH levels and less heat‐shock protein 70 response, and to activation of p‐serine/threonine kinase protein signaling pathway as well as to increased poly‐ubiquitinated proteins. These data suggest that mild UPS inhibition is compensated by other mechanisms in PK‐KO midbrain neurons. However the depletion of GSH, as happens in stressed glia, suppresses the protection against UPS inhibition‐induced cell death. Furthermore, GSH inhibition regulated differentially UPS activity and in old PK‐KO mice, which have depletion of GSH, UPS activity is decreased in comparison with that of old‐WT.  相似文献   

4.
Inhibition of proteasome activity and the resulting protein accumulation are now known to be important events in the development of many neurological disorders, including Alzheimer’s and Parkinson’s diseases. Abnormal or over expressed proteins cause endoplasmic reticulum and oxidative stress leading to cell death, thus, normal proteasome function is critical for their removal. We have shown previously, with cultured SH-SY5Y neuroblastoma cells, that proteasome inhibition by the drug epoxomicin results in accumulation of ubiquitinated proteins. This causes obligatory loading of the mitochondria with calcium (Ca2+), resulting in mitochondrial damage and cytochrome c release, followed by programmed cell death (PCD). In the present study, we demonstrate that all-trans-retinoic acid (RA) pretreatment of SH-SY5Y cells protects them from PCD death after subsequent epoxomicin treatment which causes proteasome inhibition. Even though ubiquitinated protein aggregates are present, there is no evidence to suggest that autophagy is involved. We conclude that protection by RA is likely by mechanisms that interfere with cell stress-PCD pathway that otherwise would result from protein accumulation after proteasome inhibition. In addition, although RA activates both the AKT and ERK phosphorylation signaling pathways, only pretreatment with LY294002, an inhibitor of PI3-kinase in the AKT pathway, removed the protective effect of RA from the cells. This finding implies that RA activation of the AKT signaling cascade takes precedence over its activation of ERK1/2 phosphorylation, and that this selective effect of RA is key to its protection of epoxomicin-treated cells. Taken together, these findings suggest that RA treatment of cultured neuroblastoma cells sets up conditions under which proteasome inhibition, and the resultant accumulation of ubiquitinated proteins, loses its ability to kill the cells and may likely play a therapeutic role in neurodegenerative diseases.  相似文献   

5.
Parkinson disease is the second most common neurodegenerative disease. The molecular hallmark is the accumulation of proteinaceous inclusions termed Lewy bodies containing misfolded and aggregated α-synuclein. The molecular mechanism of clearance of α-synuclein aggregates was addressed using the bakers' yeast Saccharomyces cerevisiae as the model. Overexpression of wild type α-synuclein or the genetic variant A53T integrated into one genomic locus resulted in a gene copy-dependent manner in cytoplasmic proteinaceous inclusions reminiscent of the pathogenesis of the disease. In contrast, overexpression of the genetic variant A30P resulted only in transient aggregation, whereas the designer mutant A30P/A36P/A76P neither caused aggregation nor impaired yeast growth. The α-synuclein accumulation can be cleared after promoter shut-off by a combination of autophagy and vacuolar protein degradation. Whereas the proteasomal inhibitor MG-132 did not significantly inhibit aggregate clearance, treatment with phenylmethylsulfonyl fluoride, an inhibitor of vacuolar proteases, resulted in significant reduction in clearance. Consistently, a cim3-1 yeast mutant restricted in the 19 S proteasome regulatory subunit was unaffected in clearance, whereas an Δatg1 yeast mutant deficient in autophagy showed a delayed aggregate clearance response. A cim3-1Δatg1 double mutant was still able to clear aggregates, suggesting additional cellular mechanisms for α-synuclein clearance. Our data provide insight into the mechanisms yeast cells use for clearing different species of α-synuclein and demonstrate a higher contribution of the autophagy/vacuole than the proteasome system. This contributes to the understanding of how cells can cope with toxic and/or aggregated proteins and may ultimately enable the development of novel strategies for therapeutic intervention.  相似文献   

6.
Proteotoxicity resulting from accumulation of damaged/unwanted proteins contributes prominently to cellular aging and neurodegeneration. Proteasomal removal of these proteins upon covalent polyubiquitination is highly regulated. Recent reports proposed a role for autophagy in clearance of diffuse ubiquitinated proteins delivered by p62/SQSTM1. Here, we compared the turnover dynamics of endogenous ubiquitinated proteins by proteasomes and autophagy by assessing the effect of their inhibitors. Autophagy inhibitors bafilomycin A1, ammonium chloride, and 3-methyladenine failed to increase ubiquitinated protein levels. The proteasome inhibitor epoxomicin raised ubiquitinated protein levels at least 3-fold higher than the lysosomotropic agent chloroquine. These trends were observed in SK-N-SH cells under serum or serum-free conditions and in WT or Atg5(-/-) mouse embryonic fibroblasts (MEFs). Notably, chloroquine considerably inhibited proteasomes in SK-N-SH cells and MEFs. In these cells, elevation of p62/SQSTM1 was greater upon proteasome inhibition than with all autophagy inhibitors tested and was reduced in Atg5(-/-) MEFs. With epoxomicin, soluble p62/SQSTM1 associated with proteasomes and p62/SQSTM1 aggregates contained inactive proteasomes, ubiquitinated proteins, and autophagosomes. Prolonged autophagy inhibition (96 h) failed to elevate ubiquitinated proteins in rat cortical neurons, although epoxomicin did. Moreover, prolonged autophagy inhibition in cortical neurons markedly increased p62/SQSTM1, supporting its degradation mainly by autophagy and not by proteasomes. In conclusion, we clearly demonstrate that pharmacologic or genetic inhibition of autophagy fails to elevate ubiquitinated proteins unless the proteasome is affected. We also provide strong evidence that p62/SQSTM1 associates with proteasomes and that autophagy degrades p62/SQSTM1. Overall, the function of p62/SQSTM1 in the proteasomal pathway and autophagy requires further elucidation.  相似文献   

7.
Trehalose, a disaccharide present in many non-mammalian species, protects cells against various environmental stresses. Whereas some of the protective effects may be explained by its chemical chaperone properties, its actions are largely unknown. Here we report a novel function of trehalose as an mTOR-independent autophagy activator. Trehalose-induced autophagy enhanced the clearance of autophagy substrates like mutant huntingtin and the A30P and A53T mutants of alpha-synuclein, associated with Huntington disease (HD) and Parkinson disease (PD), respectively. Furthermore, trehalose and mTOR inhibition by rapamycin together exerted an additive effect on the clearance of these aggregate-prone proteins because of increased autophagic activity. By inducing autophagy, we showed that trehalose also protects cells against subsequent pro-apoptotic insults via the mitochondrial pathway. The dual protective properties of trehalose (as an inducer of autophagy and chemical chaperone) and the combinatorial strategy with rapamycin may be relevant to the treatment of HD and related diseases, where the mutant proteins are autophagy substrates.  相似文献   

8.
Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.  相似文献   

9.
《Autophagy》2013,9(5):701-703
The ubiquitin-proteasome and autophagy-lysosomal pathways are the two main routes of protein and organelle clearance in eukaryotic cells. The proteasome system is responsible for unfolded, short-lived proteins, which precludes the clearance of oligomeric and aggregated proteins, whereas macroautophagy, a process generally referred to as autophagy, mediates mainly the bulk degradation of long-lived cytoplasmic proteins, large protein complexes or organelles.1 Recently, the autophagy-lysosomal pathway has been implicated in neurodegenerative disorders as an important pathway for the clearance of abnormally accumulated intracellular proteins, such as huntingtin, tau, and mutant and modified α-synuclein.1-6 Our recent study illustrated the induction of adaptive autophagy in response to mutant glial fibrillary acidic protein (GFAP) accumulation in astrocytes, in the brains of patients with Alexander disease (AxD), and in mutant GFAP knock-in mouse brains.7 This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is responsible for mTOR inactivation and the induction of autophagy. We also found that the accumulation of GFAP impairs proteasome activity.8 In this commentary we discuss the potential compensatory relationship between an impaired proteasome and activated autophagy, and propose that the MLK-MAPK (mixed lineage kinase–mitogen-activated protein kinase) cascade is a regulator of this crosstalk.

Addendum to: Tang G, Yue Z, Talloczy, Z, Hagemann T, Cho W, Sulzer D, Messing A, Goldman JE. Alexander disease-mutant GFAP accumulation stimulates autophagy through p38 MAPK and mTOR signaling pathways. Hum Mol Genetics 2008; In press.  相似文献   

10.
The accumulation of α-synuclein aggregates is the hallmark of Parkinson’s disease, and more generally of synucleinopathies. The accumulation of tau aggregates however is classically found in the brains of patients with dementia, and this type of neuropathological feature specifically defines the tauopathies. Nevertheless, in numerous cases α-synuclein positive inclusions are also described in tauopathies and vice versa, suggesting a co-existence or crosstalk of these proteinopathies. Interestingly, α-synuclein and tau share striking common characteristics suggesting that they may work in concord. Tau and α-synuclein are both partially unfolded proteins that can form toxic oligomers and abnormal intracellular aggregates under pathological conditions. Furthermore, mutations in either are responsible for severe dominant familial neurodegeneration. Moreover, tau and α-synuclein appear to promote the fibrillization and solubility of each other in vitro and in vivo. This suggests that interactions between tau and α-synuclein form a deleterious feed-forward loop essential for the development and spreading of neurodegeneration. Here, we review the recent literature with respect to elucidating the possible links between α-synuclein and tau.  相似文献   

11.
Engelender S 《Autophagy》2012,8(3):418-420
The accumulation of α-synuclein is critical for the development of Parkinson disease (PD), and unraveling the mechanisms that regulate α-synuclein levels is key to understanding the pathophysiology of the disease. We recently found that USP9X deubiquitinates α-synuclein, and that this process determines the partition of α-synuclein between the proteasomal and autophagy pathways. By manipulating USP9X levels, we observed that monoubiquitinated α-synuclein is degraded by the proteasome, whereas deubiquitination of α-synuclein favors its degradation by autophagy. As USP9X levels and activity are decreased in α-synucleinopathy brains, USP9X may now represent a novel target for PD.  相似文献   

12.
The accumulation of damaged proteins can perturb cellular homeostasis and provoke aging and cellular damage. Quality control systems, such as the unfolded protein response (UPR), inflammatory signaling and protein degradation, mitigate the residence time of damaged proteins. In the present study, we have examined the UPR and inflammatory signaling in the liver of young (~6 months) and old (~28 months) mice (n=8/group), and the ability of trehalose, a compound linked to increased protein stability and autophagy, to counteract age-induced effects on these systems. When used, trehalose was provided for 4 weeks in the drinking water immediately prior to sacrifice (n=7/group). Livers from old mice were characterized by activation of the UPR, increased inflammatory signaling and indices of liver injury. Trehalose treatment reduced the activation of the UPR and inflammatory signaling, and reduced liver injury. Reductions in proteins involved in autophagy and proteasome activity observed in old mice were restored following trehalose treatment. The autophagy marker, LC3B-II, was increased in old mice treated with trehalose. Metabolomics analyses demonstrated that reductions in hexosamine biosynthetic pathway metabolites and nicotinamide in old mice were restored following trehalose treatment. Trehalose appears to be an effective intervention to reduce age-associated liver injury and mitigate the need for activation of quality control systems that respond to disruption of proteostasis.  相似文献   

13.
The accumulation of α-synuclein is critical for the development of Parkinson disease (PD), and unraveling the mechanisms that regulate α-synuclein levels is key to understanding the pathophysiology of the disease. We recently found that USP9X deubiquitinates α-synuclein, and that this process determines the partition of α-synuclein between the proteasomal and autophagy pathways. By manipulating USP9X levels, we observed that monoubiquitinated α-synuclein is degraded by the proteasome, whereas deubiquitination of α-synuclein favors its degradation by autophagy. As USP9X levels and activity are decreased in α-synucleinopathy brains, USP9X may now represent a novel target for PD.  相似文献   

14.
The disaccharide trehalose, which accumulates dramatically during heat shock and stationary phase in many organisms, enhances thermotolerance and reduces aggregation of denatured proteins. Here we report a new role for trehalose in protecting cells against oxygen radicals. Exposure of Saccharomyces cerevisiae to a mild heat shock (38 degrees C) or to a proteasome inhibitor (MG132) induced trehalose accumulation and markedly increased the viability of the cells upon exposure to a free radical-generating system (H(2)O(2)/iron). When cells were returned to normal growth temperature (28 degrees C) or MG132 was removed from the medium, the trehalose content and resistance to oxygen radicals decreased rapidly. Furthermore, a mutant unable to synthesize trehalose was much more sensitive to killing by oxygen radicals than wild-type cells. Providing trehalose exogenously enhanced the resistance of mutant cells to H(2)O(2). Exposure of cells to H(2)O(2) caused oxidative damage to amino acids in cellular proteins, and trehalose accumulation was found to reduce such damage. After even brief exposure to H(2)O(2), the trehalose-deficient mutant exhibited a much higher content of oxidatively damaged proteins than wild-type cells. Trehalose accumulation decreased the initial appearance of damaged proteins, presumably by acting as a free radical scavenger. Therefore, trehalose accumulation in stressed cells plays a major role in protecting cellular constituents from oxidative damage.  相似文献   

15.
《Autophagy》2013,9(3):431-432
Huntington and Parkinson diseases (HD and PD) are two major neurodegenerative disorders pathologically characterized by the accumulation of the aggregate-prone proteins mutant huntingtin (in HD) and α-synuclein (in PD). Mutant huntingtin is an autophagy substrate and autophagy modulators affect HD pathology both in vitro and in vivo. In vitro, α-synuclein levels are able to modulate autophagy: α-synuclein overexpression inhibits autophagy, whereas downregulation promotes autophagy. Here, we review our recent studies showing that α-synuclein levels modulate mutant huntingtin toxicity in mouse models. This phenotypic modification is accompanied by the in vivo modulation of autophagosome numbers in mouse brains from both control and HD mice expressing different levels of α-synuclein.  相似文献   

16.
Huntington and Parkinson diseases (HD and PD) are two major neurodegenerative disorders pathologically characterized by the accumulation of the aggregate-prone proteins mutant huntingtin (in HD) and α-synuclein (in PD). Mutant huntingtin is an autophagy substrate and autophagy modulators affect HD pathology both in vitro and in vivo. In vitro, α-synuclein levels are able to modulate autophagy: α-synuclein overexpression inhibits autophagy, whereas downregulation promotes autophagy. Here, we review our recent studies showing that α-synuclein levels modulate mutant huntingtin toxicity in mouse models. This phenotypic modification is accompanied by the in vivo modulation of autophagosome numbers in mouse brains from both control and HD mice expressing different levels of α-synuclein.  相似文献   

17.
Parkinson disease is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. α-Synuclein accumulation in turn leads to compensatory effects that may include the up-regulation of autophagy. Another common feature of Parkinson disease (PD) is mitochondrial dysfunction. Here, we provide evidence that the overactivation of autophagy may be a link that connects the intracellular accumulation of α-synuclein with mitochondrial dysfunction. We found that the activation of macroautophagy in primary cortical neurons that overexpress mutant A53T α-synuclein leads to massive mitochondrial destruction and loss, which is associated with a bioenergetic deficit and neuronal degeneration. No mitochondrial removal or net loss was observed when we suppressed the targeting of mitochondria to autophagosomes by silencing Parkin, overexpressing wild-type Mitofusin 2 and dominant negative Dynamin-related protein 1 or blocking autophagy by silencing autophagy-related genes. The inhibition of targeting mitochondria to autophagosomes or autophagy was also partially protective against mutant A53T α-synuclein-induced neuronal cell death. These data suggest that overactivated mitochondrial removal could be one of the contributing factors that leads to the mitochondrial loss observed in PD models.  相似文献   

18.
Amyloidogenic intrinsically disordered proteins, α-synuclein and tau are linked to Parkinson's disease and Alzheimer's disease, respectively. A body of evidence suggests that α-synuclein and tau, both present in the presynaptic nerve terminals, co-aggregate in many neurological ailments. The molecular mechanism of α-synuclein-tau hetero-assembly is poorly understood. Here we show that amyloid formation is synergistically facilitated by heterotypic association mediated by binding-induced misfolding of both α-synuclein and tau K18. We demonstrate that the intermolecular association is largely driven by the electrostatic interaction between the negatively charged C-terminal segment of α-synuclein and the positively charged tau K18 fragment. This heterotypic association results in rapid formation of oligomers that readily mature into hetero-fibrils with a much shorter lag phase compared to the individual proteins. These findings suggested that the critical intermolecular interaction between α-synuclein and tau can promote facile amyloid formation that can potentially lead to efficient sequestration of otherwise long-lived lethal oligomeric intermediates into innocuous fibrils. We next show that a well-known familial Parkinson's disease mutant (A30P) that is known to aggregate slowly via accumulation of highly toxic oligomeric species during the long lag phase converts into amyloid fibrils significantly faster in the presence of tau K18. The early intermolecular interaction profoundly accelerates the fibrillation rate of A30P α-synuclein and impels the disease mutant to behave similar to wild-type α-synuclein in the presence of tau. Our findings suggest a mechanistic underpinning of bypassing toxicity and suggest a general strategy by which detrimental amyloidogenic precursors are efficiently sequestered into more benign amyloid fibrils.  相似文献   

19.
Retinoids (vitamin A and derivatives) are recognized as essential factors for central nervous system (CNS) development. Retinol (vitamin A) also was postulated to be a major antioxidant component of diet as it modulates reactive species (RS) production and oxidative stress in biological systems. Oxidative stress plays a major role either in pathogenesis or development of neurodegenerative diseases, or even in both. Here we investigate the role of retinol supplementation to human neuron-derived SH-SY5Y cells over RS production and biochemical markers associated to neurodegenerative diseases expressed at neuronal level in Parkinson’s disease and Alzheimer’s disease: α-synuclein, β-amyloid peptide, tau phosphorylation and RAGE. Retinol treatment (24 h) impaired cell viability and increased intracellular RS production at the highest concentrations (7 up to 20 µM). Antioxidant co-treatment (Trolox 100 µM) rescued cell viability and inhibited RS production. Furthermore, retinol (10 µM) increased the levels of α-synuclein, tau phosphorylation at Ser396, β-amyloid peptide and RAGE. Co-treatment with antioxidant Trolox inhibited the increased in RAGE, but not the effect of retinol on α-synuclein, tau phosphorylation and β-amyloid peptide accumulation. These data indicate that increased availability of retinol to neurons at levels above the cellular physiological concentrations may induce deleterious effects through diverse mechanisms, which include oxidative stress but also include RS-independent modulation of proteins associated to progression of neuronal cell death during the course of neurodegenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号