首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian odorant receptors form a large, diverse group of G protein-coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain.  相似文献   

2.
The modulatory effects of the biogenic amines octopamine and serotonin on pheromonal receptor neurons of Mamestra brassicae were investigated. The responses to sex pheromone components of two cells types (A and B) in single male long sensilla trichodea were monitored. Cell types A and B do not respond to the same compound. The response of type A to a pulse of the major sex pheromone component increased 5 min after octopamine injection. Responses of type B to other odorants increased after 30 min. In the absence of any pheromone stimulation the background firing activity of type A increased following octopamine injection. This background activity was used to evaluate the kinetics of octopamine and other biogenic amine effects on olfactory receptor neurons. Octopamine increased this background activity in a concentration- and time-dependent manner. Clonidine, an octopamine agonist, was shown to be more powerful in increasing the background activity of olfactory receptor neurons. The effects of octopamine and clonidine were hypothesized to arise from specific receptor activation as chlorpromazine (an octopamine antagonist) was shown to block the effect of octopamine. Serotonin, a known neuromodulator in most animal species, induced a reversible inhibition of spike firing. Altogether, these results indicate that biogenic amines can modulate the sensitivity of olfactory receptor neurons of moths either directly or by an action on adaptation.  相似文献   

3.
Odour transduction in olfactory receptor neurons   总被引:2,自引:0,他引:2  
The molecular mechanisms that control the binding of odorant to olfactory receptors and transduce this signal into membrane depolarization are reviewed. They are compared in vertebrates and insects for interspecific (allelochemicals) and intraspecific (pheromones) olfactory signals. Attempts to develop quantitative models of these multistage signalling networks are presented. Computational analysis of olfactory transduction is still in its infancy and appears as a promising area for future developments.  相似文献   

4.
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency.Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements.In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected.These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.  相似文献   

5.
Isolated squid olfactory receptor neurons respond to dopamine and betaine with hyperpolarizing conductances. We used Ca(2+) imaging techniques to determine if changes in intracellular Ca(2+) were involved in transducing the hyperpolarizing odor responses. We found that dopamine activated release of Ca(2+) from intracellular stores while betaine did not change internal Ca(2+) concentrations. Application of 10 mM caffeine also released Ca(2+) from intracellular stores, suggesting the presence of ryanodine-like receptors. Depletion of intracellular stores with 100 microM thapsigargin revealed the presence of a Ca(2+) store depletion-activated Ca(2+) influx. The influx of Ca(2+) through the store-operated channel was reversibly blocked by 10 mM Cd(2+). Taken together, these data suggest a novel odor transduction system in squid olfactory receptor neurons involving Ca(2+) release from intracellular stores. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

6.
Odor-evoked inhibition in primary olfactory receptor neurons   总被引:4,自引:1,他引:3  
Odors can inhibit as well as excite lobster olfactory receptorcells. Inhibitory components of an odor mixture act within thenormal, first 500 ms odor sampling interval of the animal toreduce the peak magnitude and increase the latency of the netexcitatory receptor potential in a concentration-dependent manner.The intracellular effects are reflected in the propagated outputof the cell. The results argue that inhibitory odor input isfunctional in olfaction by potentially serving to increase thediversity of the neuronal patterns that are thought to be thebasis of odor discrimination.  相似文献   

7.
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 s of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction.  相似文献   

8.
Inwardly rectifying currents in enzymically dissociated olfactory receptor neurons of rat were studied by using patch-clamp techniques. Upon hyperpolarization to membrane potentials more negative than -100 mV, small inward-current relaxations were observed. Activation was described by a single exponential with a time constant that decreased e-fold for a 21 mV hyperpolarization. The current was not reduced by the external application of 5 mM Ba2+, but was abolished by the addition of 5 mM Cs+ to the bath solution. Increasing the external K+ concentration ([K+]o) to 25 mM dramatically enhanced the current without affecting the voltage range or the kinetics of activation. In 25 mM [K+]o, tail currents reversed at -26 mV, significantly more positive than the K+ equilibrium potential of -44 mV. These characteristics are consistent with those of a mixed Na+/K+ inward rectification that has been reported in several types of neuronal, cardiac and smooth muscle cells. The current may contribute to controlling cell excitability during the response to some odorants.  相似文献   

9.
Applying GABA (1 microM-1 mM) to the soma of cultured lobster olfactory receptor neurons evokes an inward current (V(m) = -60 mV) accompanied by an increase in membrane conductance, with a half-effect of 487 microM GABA. The current-voltage relationship of this current is linear between -100 and 100 mV and reverses polarity at the equilibrium potential for Cl(-). The current is blocked by picrotoxin and bicuculline methiodide, and is evoked by trans-aminocrotonic acid, isoguvacine, muscimol, imidazole-4-acetic acid, and 3-amino-1-propanesulfonic acid, but not by the GABA(C)-receptor agonist cis-4-aminocrotonic acid and the GABA(B)-receptor agonist 3-aminopropylphosphonic. Applying GABA to the soma of the cells in situ reversibly suppresses the spontaneous discharge and substantially decreases the odor-evoked discharge. The effects of GABA on the cell soma in situ are antagonized by both picrotoxin and bicuculline methiodide. Taken together with evidence that GABA directly activates a chloride channel in outside-out patches excised from the soma of these neurons, we conclude that lobster olfactory receptor neurons express an ionotropic GABA receptor that can potentially regulate the output of these cells. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

10.
Vitaly Vodyanoy 《Biometals》2010,23(6):1097-1103
Zinc metal nanoparticles strongly enhance odorant responses of olfactory receptor neurons. Olfactory receptors belong to the large superfamily of G-protein coupled receptors. A theoretical model based on experimental results explains a stoichiometry of metal nanoparticles receptor interaction. The model is similar to that used by A.V. Hill for the binding reaction between hemoglobin and oxygen. The model predicted that one metal nanoparticle binds two receptor molecules to create a dimer. This result is consistent with the evidence that many G-protein-coupled receptors form dimers or larger oligomers.  相似文献   

11.
The molecular cloning of components involved in the cAMP second messenger cascade has allowed their biochemical characterization and revealed properties that are important for their role in sensory transduction. Recent evidence suggests inositol 1,4,5-trisphosphate functions as an additional second messenger in olfactory signalling. The interaction of these two pathways may contribute to the sensitivity of the olfactory system.  相似文献   

12.
Doolin RE  Ache BW 《Chemical senses》2005,30(2):105-110
Lobster olfactory receptor neurons, like those of many animals, use two modes of olfactory signaling, excitation and inhibition to code olfactory information. Inhibition appears to act through two distinct ionic mechanisms. Here we show that neither ionic mechanism is odor-specific, providing further support for the emerging understanding that there are no inhibitory odorants per se, but rather that the action of a particular odorant is inherent in the olfactory receptor cell on which an odorant acts.  相似文献   

13.
14.
In the present review we have considered the properties of the olfactory receptor neurons and discuss the strategy these cells use to perform their signaling task. Special emphasis is laid on the mechanisms for setting the membrane potential at rest and the mechanisms that the cell can use to respond with action potentials to significant stimuli only. We demonstrate that the firing properties of the receptor neurons depend upon the initial level of the membrane potential. We present the idea that the olfactory glomerulus can function as a unit in olfactory processing. In this perspective the olfactory receptor neuron is a subunit of the olfactory glomerulus. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Odorant stimulation of olfactory receptor neurons (ORNs) leads to the activation of a Ca2+ permeable cyclic nucleotide-gated (CNG) channel followed by opening of an excitatory Ca2+-activated Cl channel, which carries about 70% of the odorant-induced receptor current. This requires ORNs to have a [Cl]i above the electrochemical equilibrium to render this anionic current excitatory. In mammalian ORNs, the Na+-K+-2Cl co-transporter 1 (NKCC1) has been characterized as the principal mechanism by which these neurons actively accumulate Cl. To determine if NKCC activity is needed in amphibian olfactory transduction, and to characterize its cellular location, we used the suction pipette technique to record from Rana pipiens ORNs. Application of bumetanide, an NKCC blocker, produced a 50% decrease of the odorant-induced current. Similar effects were observed when [Cl]i was decreased by bathing ORNs in low Cl solution. Both manipulations reduced only the Cl component of the current. Application of bumetanide only to the ORN cell body and not to the cilia decreased the current by again about 50%. The results show that NKCC is required for amphibian olfactory transduction, and suggest that the co-transporter is located basolaterally at the cell body although its presence at the cilia could not be discarded.  相似文献   

16.
The spiking response of receptor neurons to various odorants has been analyzed at different concentrations. The interspike intervals were measured extracellularly before, during and after the stimulation from the olfactory epithelium of the frog Rana ridibunda. First, a quantitative method was developed to distinguish the spikes in the response from the spontaneous activity. Then, the response intensity, characterized by its median instantaneous frequency, was determined. Finally, based on statistical analyses, this characteristic was related to the concentration and quality of the odorant stimulus. It was found that the olfactory neuron is characterized by a low modulation in frequency and a short range of discriminated intensities. The significance of the results is discussed from both a biological and a modelling point of view.  相似文献   

17.
18.
Embryonic cells are very robust in surviving dissection and culturing protocols and easily adapt to their in vitro environment. Despite these advantages, research in the olfactory field on cultured embryonic olfactory neurons is sparse. In this study, two primary rat olfactory explant cultures of different embryonic d (E17 and E20) were established, comprising epithelium and bulb. The functionality of these neurons was tested by measuring intracellular calcium responses to cAMP-inducing agents forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) with fluorescence microscopy. For E17, the responsive cell fraction increased over time, from an initial 3% at the 1 d in vitro (DIV) to a maximum of 19% at 11 DIV. The response of E20 neurons fluctuated over time around a more or less stable 13%. A logistic regression analysis indicated a significant difference between both embryonic d in the response to FSK + IBMX. In addition, of these functional neurons, 23.3% of E17 and 54.3% of E20 cultures were responsive to the odorant isoamyl acetate.  相似文献   

19.
Recent biochemical evidence indicates that protein kinase C (PKC) and G-protein-coupled receptor kinases (GRKs) are involved in olfactory signal termination and desensitization. The polymerase chain reaction (PCR) was used to investigate the expression of PKC and GRK genes in olfactory tissue and in isolated olfactory receptor neurons from channel catfish (Ictalurus punctatus). Sequence analysis of cloned PKC PCR products showed that the α, β, δ, ϵ, and τ isotypes were expressed in olfactory tissue. Sequence analysis of PCR products obtained from isolated olfactory receptor neurons showed that PKCβ and PKCδ were expressed in the receptor cells. A 600-bp GRK PCR product was obtained from isolated olfactory neurons that shared 86% and 92% amino acid sequence identity to the mammalian β-adrenergic receptor kinase gene products βARK1 and βARK2, respectively. Go6976, a specific inhibitor of calcium-regulated PKC activity, completely inhibited odorant-stimulated PKC activity in isolated olfactory cilia. This result suggested that odorant-stimulated PKC activity is mediated by the calcium-sensitive PKCβ isotype. Taken together, these results are consistent with the conclusion that PKCβ and βARK mediate odorant receptor phosphorylation and olfactory signal termination. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 387–394, 1997  相似文献   

20.
The detection of volatile odorants is supposed to begin with their interaction with soluble binding proteins which shuttle the hydrophobic ligands through the aqueous mucus layer towards specific odorant receptors in the ciliary membrane of olfactory neurons. A large family of receptors for odorants has been identified recently; individual receptor types are expressed in subsets of cells distributed in distinct zones of the olfactory epithelium. Ligand-receptor interaction triggers a rapid multistep reaction cascade, ultimately leading to an electrical response of the receptor neuron. Olfactory signaling is terminated by phosphorylation of receptors via a negative feedback reaction catalyzed by two types of kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号