首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetics of bird migration: stimulus, timing, and direction   总被引:4,自引:1,他引:3  
The extent to which genetic factors are directly involved in the control of bird migration and the mode of inheritance involved has been studied systematically over the past 15 years in the Blackcap Sylvia atricapilla by cross-breeding and selective breeding. Results have also been obtained from a few experimental and field studies on Robins Eritfiacus rubecula, Blackbirds Turdus merula and Song Sparrows Melospiza melodia. Cross-breeding of migrants with nonmigrants has resulted in the partial transmission of migratory activity into the F, generation indicating that the urge to migrate is inherited and is based on a multilocus system with a threshold for expression. Migratoriness and sedentariness in obligate partial migrants is probably inherited in a similar way, suggesting that the decision to migrate also has a strong genetic basis. Both traits can be selected to phenotypic uniformity within 3–6 generations indicating an extremely high evolutionary potential. Orientation behaviour can also be transmitted to the offspring of a nonmigratory population by cross-breeding. Cross-breeding individuals with different migratory directions produced offspring with phenotypically intermediate directional preferences, suggesting that the migratory direction is also a predominantly heritable character. In the current development of novel migratory habits in those Central European Blackcaps that now winter in the British Isles, the inheritance of the novel migratory direction may be crucial. Genetic variation in migratory events seems to be sufficient to allow for many microevolutionary processes.  相似文献   

2.
鸟类迁徙:在全球变暖趋势下的演化、调控与发展(英文)   总被引:6,自引:0,他引:6  
最近几十年的研究证实 ,鸟类迁徙在很大程度上受到遗传因素的直接控制。有证据表明 ,存在某种先天的迁徙动因并涉及以下几方面的遗传调控 :(1)迁徙过程的起始、持续以及结束 ;(2 )迁徙活动量 ,即决定鸟类飞行距离的遗传参数 ;(3)迁徙方向 ;(4)生理参数 ,特别是迁徙期间的脂肪贮存 ,以及对于那些部分个体迁徙的鸟种而言 ,决定个体迁徙与否的生理参数。双因素选择实验表明 ,部分迁徙群经由几个世代的选择即可转变成完全的迁徙群或非迁徙群。新迁徙方向以及由此导致的新越冬区的改变 ,也能在野生鸟类中迅速实现。至少在以往研究得最为透彻的鸟种 (黑顶林莺Sylviaatricapilla)中 ,“迁徙”或“非迁徙”是先天性的 ,与特异性迁徙活动量相关 (尤如一时间程序 ) ,前者 (迁徙的 )已证实是由一种阈机制所控制的。一项新的鸟类迁徙理论假设 ,即使好些完全迁徙的类群 ,较低水平的迁徙活动量选择也会导致阈的异位 ,低于这一阈值就会出现非迁徙个体。因此 ,通过选择作用 ,一个迁徙型种群可以通过部分迁徙型转变为非迁徙型。这种中间阶段在现存鸟类中十分普遍。它始见于生物演化早期 ,就鸟类而言 ,可能在原始鸟类就已具备。模型运算表明 ,在施以强定向选择情况下 ,迁徙鸟类经过约 4 0年可转变为留鸟 ,反之亦然。这就解  相似文献   

3.
Partial migration, where populations are composed of both migratory and resident individuals, is extremely widespread across the animal kingdom. Researchers studying fish movements have long recognized that many fishes are partial migrants, however, no detailed taxonomic review has ever been published. In addition, previous work and synthesis has been hampered by a varied lexicon associated with this phenomenon in fishes. In this review, definitions and important concepts in partial migration research are discussed, and a classification system of the different forms of partial migration in fishes introduced. Next, a detailed taxonomic overview of partial migration in this group is considered. Finally, methodological approaches that ichthyologists can use to study this fascinating phenomenon are reviewed. Partial migration is more widespread amongst fishes than previously thought, and given the array of techniques available to fish biologists to study migratory variation the future of the field looks promising.  相似文献   

4.
Partial migration, whereby a proportion of the population migrates, is common across the animal kingdom. Much of the focus in the literature has been on trying to explain the underlying mechanisms for the coexistence of migrants and residents. In addition, there has been an increasing number of reports on the prevalence and frequency of partially migratory populations. One possible explanation for the occurrence of partial migration, which has received no attention in the literature, is that of ‘transient coexistence’ during the invasion phase of a superior behaviour. In this study we develop a theoretical basis for explaining partial migration as a transient coexistence and derive a method to predict the frequency of residents and migrants in partially migrating populations. This method is useful to predict the frequencies of migrants and residents in a small set of populations as a complementing hypothesis to ‘an Evolutionary Stable Strategy (ESS)’. We use the logistic growth equation to derive a formula for predicting the frequencies of residents and migrants. We also use simulations and empirical data from white perch (Morone americana), moose (Alces alces) and red deer (Cervus elaphus) to demonstrate our approach. We show that the probability of detecting partial migration due to transient coexistence depends upon a minimum number of tracked or marked individuals for a given number of populations. Our approach provides a starting point in searching for explanations to the observed frequencies, by contrasting the observed pattern with both the predicted transient and the uniform random pattern. Aggregating such information on observed patterns (proportions of migrants and residents) may eventually lead to the development of a quantitative theory for the equilibrium (ESS) populations as well.  相似文献   

5.
Metabolic rates may be informative of adaptations to migration or wintering at high latitudes and may therefore be particularly interesting in partial migrants requiring adaptations to both migration and residency. To study the extent of physiological adaptations in migratory and resident blue tits Cyanistes caeruleus during the period of autumn migration in southern Sweden, we measured basal metabolic rate (BMR) and cost of thermoregulation at 0°C (CTR0). In contrast to other migrants en route, migratory blue tits had lower BMR than residents. As migratory blue tits travel extraordinarily slowly on autumn migration and residents suffer from harsher climate and severe competition, residents may need dynamic adjustments that involve larger metabolic costs than migrants. Resident males had lower CTR0 than migrants and resident females. Resident males are socially dominant, which suggests that they have priority of access to food sources during summer and early autumn. They also spend more time on moult, which would give them the time and energy needed for molting into a plumage of higher insulation quality than is possible for migrants and resident females.  相似文献   

6.
Many species show migratory behaviour in response to seasonal changes in environmental conditions. A peculiar, yet widespread phenomenon is partial migration, when a single population consists of both migratory and non‐migratory individuals. There are still many open questions regarding the stability and evolutionary significance of such populations. For passerines the inheritance of migratory activity is best described by the threshold model of quantitative genetics. Such a model has not yet been employed in theoretical studies, in which stability of partially migratory populations is usually linked to group differences in survival or reproduction. Here we develop a parsimonious model featuring a conditional genetic threshold for passerine migratory behaviour under which stable partial migration can be observed, and we explore the resulting selection landscape. Our model results show a cline in migratory behaviour across the landscape, from fully migratory populations to fully residential populations, with a fairly wide zone of partially migratory populations, which is stable in both time and space under a wide range of parameter settings. Temporal stability of the zone is linked with the yearly variance in both migration survival and resident winter survival. In contrast to other theoretical studies, we show that density dependence in winter survival is not essential for observing partially migratory populations. In addition, we observe that selection on the genetic threshold value occurs mainly at the borders of the zone of partial migration. This result suggests that fully migratory and fully residential populations in areas far from the zone of partial migration can harbour genetic diversity that allows the appearance of the alternative phenotype under (a wide range of) different conditions.  相似文献   

7.
Francisco Pulido 《Oikos》2011,120(12):1776-1783
Partial migration is a common and widespread phenomenon in animal populations. Even though the ecological causes for the evolution and maintenance of partial migration have been widely discussed, the consequences of the genetics underlying differences in migration patterns have been little acknowledged. Here, I revise current ideas on the genetics of partial migration and identify open questions, focussing on migration in birds. The threshold model of migration describing the inheritance and phenotypic expression of migratory behaviour is strongly supported by experimental results. As a consequence of migration being a threshold trait, high levels of genetic variation can be preserved, even under strong directional selection. This is partly due to strong environmental canalization. This cryptic genetic variation may explain rapid de novo evolution of migratory behaviour in resident populations and the high prevalence of partial migration in animal populations. To date the threshold model of migration has been tested only under laboratory conditions. For obtaining a more realistic representation of migratory behaviour in the wild, the simple threshold model needs to be extended by considering that the threshold of migration or the liability may be modified by environmental effects. This environmental threshold model is valid for both facultative and obligate migration movements, and identifies genetic accommodation as an important process underlying evolutionary change in migration status. Future research should aim at identifying the major environmental variables modifying migration propensity and at determining reaction norms of the threshold and liability across variation in these variables.  相似文献   

8.
Migration is widespread among animals, but the factors that influence the decision to migrate are poorly understood. Within a single species, populations may be completely migratory, completely sedentary or partially migratory. We use a population model to derive conditions for migration and demonstrate how migratory survival, habitat quality and density dependence on both the breeding and non-breeding grounds influence conditions for migration and the proportion of migrants within a population. Density dependence during the season in which migratory and sedentary individuals use separate sites is necessary for partial migration. High levels of density dependence at the non-shared sites widen the range of survival values within which we predict partial migration, whereas increasing the strength of density dependence at the shared sites narrows the range of survival values within which we predict partial migration. Our results have important implications for predicting how contemporary populations with variable migration strategies may respond to changes in the quality or quantity of habitat.  相似文献   

9.
Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within‐population variability in migratory movements and destinations, here termed ‘migratory diversity’, might be more resilient to environmental change. To test this, we related map‐based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non‐breeding ranges relative to breeding, a characteristic we term ‘migratory dispersion’, were less likely to be declining than those with more restricted non‐breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non‐breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe‐wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.  相似文献   

10.
This paper reviews the factors and mechanisms which result in the development of the metabolic state characteristic of migration with special reference to a palaeotropic migrant the redheaded bunting,Emberiza bruniceps. Changes in climatic conditions and food supply act as proximate triggers of migratory behaviour in partial migrants. Typical migrants like buntings use daylength as a cue but the exact mechanism of how photoperiodic information is translated in terms of migratory events is still not known. Almost entirely the photoperiodic effects have been explained on the basis of the involvement of hypothalamo/hypophyseal system. We feel mechanism(s) other than those acting through neuroendocrine system may be equally important. Furthermore the role of temperature has not been adequately explored so far. Our observations indicate the possibility that redheaded buntings might integrate the information received from photoperiod with environmental temperature (and other factors?) resulting in the development of migratory state. The physiological control of avian migration is much less understood. Majority of papers have centered around the ‘gonadal hypothesis’ of Rowan supporting or contradicting it without providing conclusive evidence. Pituitary prolactin has also been shown to be implicated although the mechanism of action is only speculative. Conclusive evidence for the involvement of thyroid hormones (thyroxine, T4; triiodothyronine, T3) in the physiological timing of migration has been produced attributing independent roles to T4 and T3. It is suggested that seasonal variation in peripheral conversion of T4 to T3 could serve as an effective strategy to render available the required thyroid hormones T4 and/or T3 during different phases of the year thus accounting for the metabolic switch over from T4-dependent moult to T3-dependent migratory fat deposition and zugunruhe and also ensuring preclusion of simultaneous occurrence of these mutually incompatible events. Considering that the number of environmental and physiological factors influence this mechanism and considering that thyroid hormone molecule has been put to a wide range of usage during the course of evolution the mechanism(s) of peripheral conversion of T4-T3 may assume great flexibility and have selective value-especially in migration which is known to have evolved several times in diverse avian families. The attractiveness of this hypothesis lies in the fact that it has potential to explain the both physiological development of the metabolic state of migration and at the same time the physiological timing of migration not only with respect to the cycle of environment but also with respect to other conflicting seasonal events (moult and reproduction).  相似文献   

11.
Partial migration, where populations of animals are composed of a mixture of resident and migratory individuals, is a widespread phenomenon in nature. It has been reported to occur in all major vertebrate groups, and can have significant ecological consequences. Here we give an overview of the ecology and evolution of partial migration in animals. We firstly review the different types of partial migration, and assess the ecological drivers responsible for driving individual differences in migratory tendency within populations. A variety of factors can be important in promoting the evolution of partial migration, including competition for resources or breeding opportunities, predation risk and intraspecific niche diversity. Often various factors act synergistically to create complex patterns of movement polymorphism within populations. The question of how partial migration is maintained over evolutionary timescales is also addressed. Whilst many theoretical considerations of partial migration utilise an evolutionary stable state (ESS) paradigm, empirical evidence for this is lacking. Rather the evidence suggests that partial migration is mostly condition dependent, and the optimum outcome for an individual is dependent upon its phenotype. What determines whether an individual follows a migratory or resident strategy is discussed in light of new theory and empirical data which supports the idea that environmentally responsive genetic thresholds are important across a range of species, from birds to fish, in proximately shaping migratory tendency. Finally we espouse our vision of how partial migration research will develop in the future, and suggest a number of exciting directions that studies into migratory dimorphism may take in the coming years.  相似文献   

12.
13.
Partial migration (when only some individuals in a population undertake seasonal migrations) is common in many species and geographical contexts. Despite the development of modern statistical methods for analyzing partial migration, there have been no studies on what influences partial migration in tropical environments. We present research on factors affecting partial migration in African buffalo (Syncerus caffer) in northeastern Namibia. Our dataset is derived from 32 satellite tracking collars, spans 4 years and contains over 35,000 locations. We used remotely sensed data to quantify various factors that buffalo experience in the dry season when making decisions on whether and how far to migrate, including potential man-made and natural barriers, as well as spatial and temporal heterogeneity in environmental conditions. Using an information-theoretic, non-linear regression approach, our analyses showed that buffalo in this area can be divided into 4 migratory classes: migrants, non-migrants, dispersers, and a new class that we call "expanders". Multimodel inference from least-squares regressions of wet season movements showed that environmental conditions (rainfall, fires, woodland cover, vegetation biomass), distance to the nearest barrier (river, fence, cultivated area) and social factors (age, size of herd at capture) were all important in explaining variation in migratory behaviour. The relative contributions of these variables to partial migration have not previously been assessed for ungulates in the tropics. Understanding the factors driving migratory decisions of wildlife will lead to better-informed conservation and land-use decisions in this area.  相似文献   

14.
Neotropic migratory birds are declining across the Western Hemisphere, but conservation efforts have been hampered by the inability to assess where migrants are most limited—the breeding grounds, migratory stopover sites or wintering areas. A major challenge has been the lack of an efficient, reliable and broadly applicable method for measuring the strength of migratory connections between populations across the annual cycle. Here, we show how high‐resolution genetic markers can be used to identify genetically distinct groups of a migratory bird, the Wilson's warbler (Cardellina pusilla), at fine enough spatial scales to facilitate assessing regional drivers of demographic trends. By screening 1626 samples using 96 highly divergent single nucleotide polymorphisms selected from a large pool of candidates (~450 000), we identify novel region‐specific migratory routes and timetables of migration along the Pacific Flyway. Our results illustrate that high‐resolution genetic markers are more reliable, precise and amenable to high throughput screening than previously described intrinsic marking techniques, making them broadly applicable to large‐scale monitoring and conservation of migratory organisms.  相似文献   

15.
Allison K. Shaw  Simon A. Levin 《Oikos》2011,120(12):1871-1879
Migration is used by a number of species as a strategy for dealing with a seasonally variable environment. In many migratory species, only some individuals migrate within a given season (migrants) while the rest remain in the same location (residents), a phenomenon called ‘partial migration’. Most examples of partial migration considered in the literature (both empirically and theoretically) fall into one of two categories: either species where residents and migrants share a breeding ground and winter apart, or species where residents and migrants share an overwintering ground and breed apart. However, a third form of partial migration can occur when non‐migrating individuals actually forgo reproduction, essentially a special form of low‐frequency reproduction. While this type of partial migration is well documented in many taxa, it is not often included in the partial migration literature, and has not been considered theoretically to date. In this paper we present a model for this partial migration scenario and determine under what conditions an individual should skip a breeding opportunity (resulting in partial migration), and under what conditions individuals should breed every chance they get (resulting in complete migration). In a constant environment, we find that partial migration is expected to occur when the mortality cost of migration is high, and when individuals can greatly increase their fecundity by skipping a year before breeding. In a stochastic environment, we find that an individual should skip migration more frequently with increased risk of a bad year (higher probability and severity), with higher mortality cost of migration, and with lower mortality cost of skipping. We discuss these results in the context of empirical data and existing life history theory.  相似文献   

16.
Stochastic effects of climate and weather have a pervasive influence on the induction, performance and evolution of migration. In wing-dimorphic species, their influence on habitat quality, and on rates of development of the migrant itself, maintains variation in responses to environmental cues determining wing-form and migratory behaviour. Migrants flying above their flight boundary layer rely on winds to disperse them across landscapes in which their habitats are distributed. Patterns of distribution of habitat patches, and the influence of changing windspeeds and direction on the displacements of migrants, result in selection for variation in migratory potential at each migration. In subsequent migrations, this variation and stochastic effects of the winds on groundtracks of individual migrants ensure that their destinations ‘sample’ the landscapes they travel over. The extent and resolution of this sampling, by which migrants reach favourable habitats, depend on the components of migratory potential, their mode of inheritance, and genetic correlations between them, as well as on the characteristics of the winds on which they travel.  相似文献   

17.
Climate change has proven to affect various aspects of the migration of birds. In response to milder winters making the habitat more profitable and increasing the survival of residents, the migratory fraction of partially migratory populations has been predicted to decline. We studied the blue tit Parus caeruleus , a common partial migrant in southern Sweden. The numbers migrating at Falsterbo, a migratory passage site in SW Sweden, has increased during the last decades, in parallel with increasing winter and annual temperatures. Migration data from Falsterbo were compared with yearly indices of the size of the breeding population as estimated by the Swedish National Bird Monitoring Programme. Over the study period 1975–2004, also the breeding population has increased in size. The proportion of blue tits migrating each year did not change over the study period, or possibly even increased slightly, which is in contrast to how climate change has been predicted to influence populations containing both migratory and resident individuals. The most important factors determining the intensity of blue tit migration in a given year was the size of an important winter food source, the beech mast crop (more migrants at lower crops) and the size of the breeding population (more migrants at higher densities).  相似文献   

18.
Ornithologists, and especially northern hemisphere ornithologists, have traditionally thought of migration as an annual return movement of populations between regular breeding and non-breeding grounds. Problems arise because selection does not ordinarily act on populations and because organisms of many taxa (including birds) are clearly migrants, but fail to undertake movements of the kind described. There are also extensive return movements that are not migratory. I propose that it is more useful to think of migration as a syndrome of behavioral and other traits that function together within individuals, and that such a syndrome provides a common ground across taxa from aphids to albatrosses. Large-scale return movements of populations are one outcome of the syndrome. Similar behavioral and physiological traits serve both to define migration and to provide a test for it. I use two insect (Hemipteran) examples to illustrate migratory syndromes and to demonstrate that, in many migrants, behavior and physiology correlate with life history and morphological traits to form syndromes at two levels. I then compare the two Hemipterans with migration in birds, butterflies, and fish to assess the question of whether there are migratory syndromes in common between these diverse migrants. Syndromes are more similar at the level of behavior than when morphology and life history traits are included. Recognizing syndromes leads to important evolutionary questions concerning migration strategies, trade-offs, the maintenance of genetic variance and the responses of migratory syndromes to both similar and different selective regimes.  相似文献   

19.
Hanna Kokko 《Oikos》2011,120(12):1826-1837
Modelling of partial migration in birds has progressed from simple graphical representations to sophisticated analyses that use evolutionary invasion analysis to determine how the success of the two strategies (stay year round on the breeding grounds, or migrate) can become frequency dependent. Here I build two models to relax two assumptions commonly made in models and often violated in nature: that individuals do not vary in any trait other than their migratory propensity, and that the prior residence effect (which grants priority access of good habitats to non‐migrants) operates at maximum strength. The same framework can incorporate and merge aspects of various hypotheses proposed to explain partial migration (dominance, body size, arrival timing, and limited foraging opportunities), and shows that either small (subdominant) or large (dominant) individuals may emerge as the more likely migrants; the latter case occurs when it is easy for socially dominant migrants to win back prime breeding locations upon their arrival. The dynamics of territory acquisition is shown to be an important and understudied topic, as variations in the relative importance of prior residency versus resource holding power can shift a population from complete migration to complete year‐round residency. These models also highlight exceptions to a tacit assumption in discussions of evolution of migration under climate change, which is that populations can decline if genetic adaptation or phenotypic plasticity do not occur fast enough. Competition can also yield the opposite pattern where adaptation itself leads to a population decline.  相似文献   

20.
Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the persistence of divergent migratory behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号