首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Arabidopsis genome has six families of dynamin-related proteins. One of these families includes DRP2A and DRP2B. The domain structures of proteins of this family are most similar to those of the animal endocytosis protein, dynamin. In this study, the signals of GFP-tagged DRP2B were strongly detected in the cell plate of Arabidopsis root tip cells and tobacco cultured cells. Time-lapse observations of these signals during cytokinesis in tobacco cultured cells suggested that DRP2B mainly localized to the newly formed part of the cell plate, and that the localization dynamics of DRP2B was quite similar to that of DRP1A, which is an Arabidopsis dynamin-related protein that is closely related to soybean phragmoplastin. These results indicate that Arabidopsis dynamin-related proteins, DRP1A and DRP2B, from two different families, participate in membrane remodeling at a similar place in the cell plate.  相似文献   

2.
Ligand-induced endocytosis of the immune receptor FLAGELLIN SENSING2 (FLS2) is critical for maintaining its proper abundance in the plasma membrane (PM) to initiate and subsequently down regulate cellular immune responses to bacterial flagellin or flg22-peptide. The molecular components governing PM abundance of FLS2, however, remain mostly unknown. Here, we identified Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1A (DRP1A), a member of a plant-specific family of large dynamin GTPases, as a critical contributor to ligand-induced endocytosis of FLS2 and its physiological roles in flg22-signaling and immunity against Pseudomonas syringae pv. tomato DC3000 bacteria in leaves. Notably, drp1a single mutants displayed similar flg22-defects as those previously reported for mutants in another dynamin-related protein, DRP2B, that was previously shown to colocalize with DRP1A. Our study also uncovered synergistic roles of DRP1A and DRP2B in plant growth and development as drp1a drp2b double mutants exhibited severely stunted roots and cotyledons, as well as defective cell shape, cytokinesis, and seedling lethality. Furthermore, drp1a drp2b double mutants hyperaccumulated FLS2 in the PM prior to flg22-treatment and exhibited a block in ligand-induced endocytosis of FLS2, indicating combinatorial roles for DRP1A and DRP1B in governing PM abundance of FLS2. However, the increased steady-state PM accumulation of FLS2 in drp1a drp2b double mutants did not result in increased flg22 responses. We propose that DRP1A and DRP2B are important for the regulation of PM-associated levels of FLS2 necessary to attain signaling competency to initiate distinct flg22 responses, potentially through modulating the lipid environment in defined PM domains.

A plant-specific large dynamin GTPase is required for plant responses against bacterial pathogens and, with another dynamin, regulates the cell surface composition for plant growth and defense.  相似文献   

3.
Dynamin-related proteins (DRPs) are key components of the organelle division machineries, functioning as molecular scissors during the fission process. In Arabidopsis, DRP3A and DRP3B are shared by peroxisomal and mitochondrial division, whereas the structurally-distinct DRP5B (ARC5) protein is involved in the division of chloroplasts and peroxisomes. Here, we further investigated the roles of DRP3A, DRP3B, and DRP5B in organelle division and plant development. Despite DRP5B's lack of stable association with mitochondria, drp5B mutants show defects in mitochondrial division. The drp3A-2 drp3B-2 drp5B-2 triple mutant exhibits enhanced mitochondrial division phenotypes over drp3A-2 drp3B-2, but its peroxisomal morphology and plant growth phenotypes resemble those of the double mutant. We further demonstrated that DRP3A and DRP3B form a supercomplex in vivo, in which DRP3A is the major component, yet DRP5B is not a constituent of this complex. We thus conclude that DRP5B participates in the division of three types of organelles in Arabidopsis, acting independently of the DRP3 complex. Our findings will help elucidate the precise composition of the DRP3 complex at organelle division sites, and will be instrumental to studies aimed at understanding how the same protein mediates the morphogenesis of distinct organelles that are linked by metabolism.  相似文献   

4.
Peroxisomes undergo dramatic changes in size, shape, number, and position within the cell, but the division process of peroxisomes has not been characterized. We screened a number of Arabidopsis mutants with aberrant peroxisome morphology (apm mutants). In one of these mutants, apm1, the peroxisomes are long and reduced in number, apparently as a result of inhibition of division. We showed that APM1 encodes dynamin-related protein 3A (DRP3A), and that mutations in APM1/DRP3A also caused aberrant morphology of mitochondria. The transient expression analysis showed that DRP3A is associated with the cytosolic side of peroxisomes. These findings indicate that the same dynamin molecule is involved in peroxisomal and mitochondrial division in higher plants. We also report that the growth of Arabidopsis, which requires the cooperation of various organelles, including peroxisomes and mitochondria, is repressed in apm1, indicating that the changes of morphology of peroxisomes and mitochondria reduce the efficiency of metabolism in these organelles.  相似文献   

5.
Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor‐mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin‐related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co‐opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV‐infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1‐dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2β) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2β impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2β are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.  相似文献   

6.
Clathrin-mediated membrane trafficking is critical for multiple stages of plant growth and development. One key component of clathrin-mediated trafficking in animals is dynamin, a polymerizing GTPase that plays both regulatory and mechanical roles. Other eukaryotes use various dynamin-related proteins (DRP) in clathrin-mediated trafficking. Plants are unique in the apparent involvement of both a family of classical dynamins (DRP2) and a family of dynamin-related proteins (DRP1) in clathrin-mediated membrane trafficking. Our analysis of drp2 insertional mutants demonstrates that, similar to the DRP1 family, the DRP2 family is essential for Arabidopsis thaliana development. Gametophytes lacking both DRP2A and DRP2B were inviable, arresting prior to the first mitotic division in both male and female gametogenesis. Mutant pollen displayed a variety of defects, including branched or irregular cell plates, altered Golgi morphology and ectopic callose deposition. Ectopic callose deposition was also visible in the pollen-lethal drp1c-1 mutant and appears to be a specific feature of pollen-defective mutants with impaired membrane trafficking. However, drp2ab pollen arrested at earlier stages in development than drp1c-1 pollen and did not accumulate excess plasma membrane or display other gross defects in plasma membrane morphology. Therefore, the DRP2 family, but not DRP1C, is necessary for cell cycle progression during early gametophyte development. This suggests a possible role for DRP2-dependent clathrin-mediated trafficking in the transduction of developmental signals in the gametophyte.  相似文献   

7.
In most dicotyledonous plants, vascular tissues in the leaf have a reticulate venation pattern. We have isolated and characterized an Arabidopsis (Arabidopsis thaliana) mutant defective in the vascular network defective mutant, van3. van3 mutants show a discontinuous vascular pattern, and VAN3 is known to encode an ADP-ribosylation-factor-GTPase-activating protein that regulates membrane trafficking in the trans-Golgi network. To elucidate the molecular nature controlling the vein patterning process through membrane trafficking, we searched VAN3-interacting proteins using a yeast (Saccharomyces cerevisiae) two hybrid system. As a result, we isolated the plant Dynamin-Related Protein 1A (DRP1A) as a VAN3 interacting protein. The spatial and temporal expression patterns of DRP1AGUS and VAN3GUS were very similar. The subcellular localization of VAN3 completely overlapped to that of DRP1A. drp1a showed a disconnected vascular network, and the drp1a mutation enhanced the phenotype of vascular discontinuity of the van3 mutant in the drp1a van3 double mutant. Furthermore, the drp1 mutation enhanced the discontinuous vascular pattern of the gnom mutant, which had the same effect as that of the van3 mutation. These results indicate that DRP1 modulates the VAN3 function in vesicle budding from the trans-Golgi network, which regulates vascular formation in Arabidopsis.  相似文献   

8.
The polarized transport of the phytohormone auxin [1], which is crucial for the regulation of different stages of plant development [2, 3], depends on the asymmetric plasma membrane distribution of the PIN-FORMED (PIN) auxin efflux carriers [4,?5]. The PIN polar localization results from clathrin-mediated endocytosis (CME) from the plasma membrane and subsequent polar recycling [6]. The Arabidopsis genome encodes two groups of dynamin-related proteins (DRPs) that show homology to mammalian dynamin-a protein required for fission of endocytic vesicles during CME [7, 8]. Here we show by coimmunoprecipitation (coIP), bimolecular fluorescence complementation (BiFC), and F?rster resonance energy transfer (FRET) that members of the DRP1 group closely associate with PIN proteins at the cell plate. Localization and phenotypic analysis of novel drp1 mutants revealed a requirement for DRP1 function in correct PIN distribution and in auxin-mediated development. We propose that rapid and specific internalization of PIN proteins mediated by the DRP1 proteins and the associated CME machinery from the cell plate membranes during cytokinesis is an important mechanism for proper polar PIN positioning in interphase cells.  相似文献   

9.
Two similar Arabidopsis dynamin-related proteins, DRP3A and DRP3B, are thought to be key factors in both mitochondrial and peroxisomal fission. However, the functional and genetic relationships between DRP3A and DRP3B have not been fully investigated. In a yeast two-hybrid assay, DRP3A and DRP3B interacted with themselves and with each other. DRP3A and DRP3B localized to mitochondria and peroxisomes, and co-localized with each other in leaf epidermal cells. In two T-DNA insertion mutants, drp3a and drp3b , the mitochondria are a little longer and fewer in number than those in the wild-type cells. In the double mutant, drp3a/drp3b , mitochondria are connected to each other, resulting in massive elongation. Overexpression of either DRP3A or DRP3B in drp3a/drp3b restored the particle shape of mitochondria, suggesting that DRP3A and DRP3B are functionally redundant in mitochondrial fission. In the case of peroxisomal fission, DRP3A and DRP3B appear to have different functions: peroxisomes in drp3a were larger and fewer in number than those in the wild type, whereas peroxisomes in drp3b were as large and as numerous as those in the wild type, and peroxisomes in drp3a/drp3b were as large and as numerous as those in drp3a . Although overexpression of DRP3A in drp3a/drp3b restored the shape and number of peroxisomes, overexpression of DRP3B did not restore the phenotypes, and often caused elongation instead. These results suggest that DRP3B and DRP3A have redundant molecular functions in mitochondrial fission, whereas DRP3B has a minor role in peroxisomal fission that is distinct from that of DRP3A.  相似文献   

10.
Previously, we reported that expression of a dominant-interfering neuronal-specific dynamin 1 (K44A/dynamin 1) inhibited the plasma membrane internalization of GLUT-4 in 3T3L1 adipocytes (15). To investigate the role of the ubiquitously expressed isoform of dynamin, dynamin 2, on adipocyte GLUT-4 internalization, and to determine whether dynamin splice variants have functional specificity, we expressed each of the four dynamin 2 isoforms (aa, ab, ba, and bb) as either wild-type proteins or GTPase-defective mutants. When expressed as enhanced green fluorescent protein (EGFP) fusions, these isoforms were found to have overlapping subcellular distributions being localized throughout the cell cytoplasm, on punctate vesicles and in a perinuclear compartment. This distribution was qualitatively similar to that of endogenous dynamin 2 and overlapped with GLUT-4 in the basal state. Expression of wild-type dynamin 2 isoforms had no effect on the basal or insulin-stimulated distribution of GLUT-4; however, expression of the dominant-interfering dynamin 2 mutants inhibited GLUT-4 endocytosis. These data demonstrate that dynamin 2 is required for GLUT-4 endocytosis in 3T3L1 adipocytes and suggest that, relative to GLUT-4 trafficking, the dynamin 2 splice variants have overlapping functions and are probably not responsible for mediating distinct GLUT-4 budding events.  相似文献   

11.
In eukaryotic cells, PtdIns 3,5-kinase, Fab1/PIKfyve produces PtdIns (3,5) P(2) from PtdIns 3-P, and functions in vacuole/lysosome homeostasis. Herein, we show that expression of Arabidopsis (Arabidopsis thaliana) FAB1A/B in fission yeast (Schizosaccharomyces pombe) fab1 knockout cells fully complements the vacuole morphology phenotype. Subcellular localizations of FAB1A and FAB1B fused with green fluorescent protein revealed that FAB1A/B-green fluorescent proteins localize to the endosomes in root epidermal cells of Arabidopsis. Furthermore, reduction in the expression levels of FAB1A/B by RNA interference impairs vacuolar acidification and endocytosis. These results indicate that Arabidopsis FAB1A/B functions as PtdIns 3,5-kinase in plants and in fission yeast. Conditional knockdown mutant shows various phenotypes including root growth inhibition, hyposensitivity to exogenous auxin, and disturbance of root gravitropism. These phenotypes are observed also in the overproducing mutants of FAB1A and FAB1B. The overproducing mutants reveal additional morphological phenotypes including dwarfism, male-gametophyte sterility, and abnormal floral organs. Taken together, this evidence indicates that imbalanced expression of FAB1A/B impairs endomembrane homeostasis including endocytosis, vacuole formation, and vacuolar acidification, which causes pleiotropic developmental phenotypes mostly related to the auxin signaling in Arabidopsis.  相似文献   

12.
BACKGROUND AND AIMS: Recent reports have described dramatic alterations in mitochondrial morphology during metazoan apoptosis. A dynamin-related protein (DRP) associated with mitochondrial outer membrane fission is known to be involved in the regulation of apoptosis. This study analysed the relationship between mitochondrial fission and regulation of plant cell death. METHODS: Transgenic plants were generated possessing Arabidopsis DRP3B (K56A), the dominant-negative form of Arabidopsis DRP, mitochondrial-targeted green fluorescent protein and mouse Bax. KEY RESULTS: Arabidopsis plants over-expressing DRP3B (K56A) exhibited long tubular mitochondria. In these plants, mitochondria appeared as a string-of-beads during cell death. This indicates that DRP3B (K56A) prevented mitochondrial fission during plant cell death. However, in contrast to results for mammalian cells and yeast, Bax-induced cell death was not inhibited in DRP3B (K56A)-expressing plant cells. Similarly, hydrogen peroxide-, menadione-, darkness- and salicylic acid-induced cell death was not inhibited by DRP3B (K56A) expression. CONCLUSIONS: These results indicate that the systems controlling cell death in animals and plants are not common in terms of mitochondrial fission.  相似文献   

13.
Peroxisomes are multi-functional organelles that differ in size and abundance depending on the species, cell type, developmental stage, and metabolic and environmental conditions. The PEROXIN11 protein family and the DYNAMIN-RELATED PROTEIN3A (DRP3A) protein have been shown previously to play key roles in peroxisome division in Arabidopsis. To establish a mechanistic model of peroxisome division in plants, we employed forward and reverse genetic approaches to identify more proteins involved in this process. In this study, we identified three new components of the Arabidopsis peroxisome division apparatus: DRP3B, a homolog of DRP3A, and FISSION1A and 1B (FIS1A and 1B), two homologs of the yeast and mammalian FIS1 proteins that mediate the fission of peroxisomes and mitochondria by tethering the DRP proteins to the membrane. DRP3B is partially targeted to peroxisomes and causes defects in peroxisome fission when the gene function is disrupted. drp3A drp3B double mutants display stronger deficiencies than each single mutant parent with respect to peroxisome abundance, seedling establishment and plant growth, suggesting partial functional redundancy between DRP3A and DRP3B. In addition, FIS1A and FIS1B are each dual-targeted to peroxisomes and mitochondria; their mutants show growth inhibition and contain peroxisomes and mitochondria with incomplete fission, enlarged size and reduced number. Our results demonstrate that both DRP3 and FIS1 protein families contribute to peroxisome fission in Arabidopsis, and support the view that DRP and FIS1 orthologs are common components of the peroxisomal and mitochondrial division machineries in diverse eukaryotic species.  相似文献   

14.
Dynamin-related proteins are large GTPases that deform and cause fission of membranes. The DRP1 family of Arabidopsis thaliana has five members of which DRP1A, DRP1C, and DRP1E are widely expressed. Likely functions of DRP1A were identified by studying rsw9, a null mutant of the Columbia ecotype that grows continuously but with altered morphology. Mutant roots and hypocotyls are short and swollen, features plausibly originating in their cellulose-deficient walls. The reduction in cellulose is specific since non-cellulosic polysaccharides in rsw9 have more arabinose, xylose, and galactose than those in wild type. Cell plates in rsw9 roots lack DRP1A but still retain DRP1E. Abnormally placed and often incomplete cell walls are preceded by abnormally curved cell plates. Notwithstanding these division abnormalities, roots and stems add new cells at wild-type rates and organ elongation slows because rsw9 cells do not grow as long as wild-type cells. Absence of DRP1A reduces endocytotic uptake of FM4-64 into the cytoplasm of root cells and the hypersensitivity of elongation and radial swelling in rsw9 to the trafficking inhibitor monensin suggests that impaired endocytosis may contribute to the development of shorter fatter roots, probably by reducing cellulose synthesis.  相似文献   

15.
Mitochondrial fission is achieved partially by the activity of self-assembling dynamin-related proteins (DRPs) in diverse organisms. Mitochondrial fission in Arabidopsis thaliana is mediated by DRP3A and DRP3B, but the other genes and molecular mechanisms involved have yet to be elucidated. To identify these genes, we screened and analyzed Arabidopsis mutants with longer and fewer mitochondria than those of the wild type. ELM1 was found to be responsible for the phenotype of elongated mitochondria. This phenotype was also observed in drp3a plants. EST and genomic sequences similar to ELM1 were found in seed plants but not in other eukaryotes. ELM1:green fluorescent protein (GFP) was found to surround mitochondria, and ELM1 interacts with both DPR3A and DRP3B. In the elm1 mutant, DRP3A:GFP was observed in the cytosol, whereas in wild-type Arabidopsis, DRP3A:GFP localized to the ends and constricted sites of mitochondria. These results collectively suggest that mitochondrial fission in Arabidopsis is mediated by the plant-specific factor ELM1, which is required for the relocalization of DRP3A (and possibly also DRP3B) from the cytosol to mitochondrial fission sites.  相似文献   

16.
Plants resistant to aluminium (Al) stress were isolated from Arabidopsis thaliana enhancer-tagged mutant lines. Compared with the parental Col-7 control line, one of the resistant candidates, #355-2, showed a higher expression of the F9E10.5 gene (At1g75100) on chromosome 1, a lower Al content in whole roots, and a shorter root hair length (approximately 30%). Both Al influx and associated oxidative stress occurred in root hairs, as well as in root tips of Col-7; however, they were seen only in root tips of #355-2. Transgenic plants overexpressing the F9E10.5 gene showed a slightly higher Al resistance than their parental control line (Ler). The F9E10.5 gene encodes an auxilin-like protein related to the clathrin-uncoating process in endocytosis. Microscopic observation indicated that both Al ion influx and endocytosis activity were lower in root hair cells of the #355-2 line than in those of Col-7. These results suggested that overexpression of this auxilin-like protein inhibits endocytosis in root hair cells by a disturbance of the transport system as in animal cells shown previously. It was also suggested that a part of the Al influx occurred via endocytosis in root hair cells in Arabidopsis. The Al resistance in the #355-2 line may therefore be due to a lower Al uptake via endocytosis in the root hair region.  相似文献   

17.
Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.  相似文献   

18.
Plant root hair formation is initiated when specialized elongating root epidermis cells (trichoblasts) assemble distinct domains at the plasma membrane/cell wall cell periphery complexes facing the root surface. These localities show accumulation of expansin and progressively transform into tip-growing root hair apices. Experimentation showed that trichoblasts made devoid of microtubules (MTs) were unaffected in root hair formation, whereas those depleted of F-actin by the G-actin sequestering agent latrunculin B had their root hair formation blocked after the bulge formation stage. In accordance with this, MTs are naturally depleted from early outgrowing bulges in which dense F-actin meshworks accumulate. These F-actin caps remain associated with tips of emerging and growing root hairs. Constitutive expression of the GFP-mouse talin fusion protein in transgenic Arabidopsis, which visualizes all classes of F-actin in a noninvasive mode, allowed in vivo confirmation of the presence of distinct F-actin meshworks within outgrowing bulges and at tips of young root hairs. Profilin accumulates, at both the protein and the mRNA levels, within F-actin-enriched bulges and at tips of emerging hairs. ER-based calreticulin and HDEL proteins also accumulate within outgrowing bulges and remain enriched at tips of emerging hairs. All this suggests that installation of the actin-based tip growth machinery takes place only after expansin-associated bulge formation and requires assembly of profilin-supported dynamic F-actin meshworks.  相似文献   

19.
In Arabidopsis root tips cultured in medium containing sufficient nutrients and the membrane-permeable protease inhibitor E-64d, parts of the cytoplasm accumulated in the vacuoles of the cells from the meristematic zone to the elongation zone. Also in barley root tips treated with E-64, parts of the cytoplasm accumulated in autolysosomes and pre-existing central vacuoles. These results suggest that vacuolar and/or lysosomal autophagy occurs constitutively in these regions of cells. 3-Methyladenine, an inhibitor of autophagy, inhibited the accumulation of such inclusions in Arabidopsis root tip cells. Such inclusions were also not observed in root tips prepared from Arabidopsis T-DNA mutants in which AtATG2 or AtATG5, an Arabidopsis homolog of yeast ATG genes essential for autophagy, is disrupted. In contrast, an atatg9 mutant, in which another homolog of ATG is disrupted, accumulated a significant number of vacuolar inclusions in the presence of E-64d. These results suggest that both AtAtg2 and AtAtg5 proteins are essential for autophagy whereas AtAtg9 protein contributes to, but is not essential for, autophagy in Arabidopsis root tip cells. Autophagy that is sensitive to 3-methyladenine and dependent on Atg proteins constitutively occurs in the root tip cells of Arabidopsis.  相似文献   

20.
Membranes of eukaryotic cells contain high lipid‐order sterol‐rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher‐plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell‐plate formation in Arabidopsis relies on sterol‐ and DYNAMIN‐RELATED PROTEIN1A (DRP1A)‐dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order‐sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid‐order membrane domain. The cell‐plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co‐localize with DRP1A at the cell plate, and DRP1A accumulates in detergent‐resistant membrane fractions. Modifications of sterol concentration or composition reduce cell‐plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid‐order domain, and pave the way to explore potential feedback between lipid order and function of dynamin‐related proteins during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号