首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
A. K. Rai 《Limnology》2000,1(1):33-46
Limnological characteristics were studied and analyzed in the subtropical Lakes Phewa, Begnas, and Rupa of Pokhara Valley, Nepal, from 1993 to 1997. The annual water temperature ranged from 12° to 29°C in all lakes. Lake Phewa and Lake Begnas were monomictic and anoxic in the hypolimnion during thermal stratification from April to September. Dissolved oxygen was drastically depleted in April and/or May in shallow Lake Rupa when the macrophyte community began to decompose. NH4 +-N accumulated below 5 m during March–September when dissolved oxygen was depleted in Lakes Phewa and Begnas. The PC : PP ratio was higher, but the PC : PN and PN : PP ratios were close to the Redfield ratio (106C : 16N : 1P) in Lakes Phewa and Begnas, denoting that P was limited. Annual net primary production showed that the lakes were productive but will tend to become heterotrophic in the future. The seasonal variation of chlorophyll a concentration was high, but its annual variation was low. Ceratium hirundinella and Peridinium spp. in Lake Phewa, Microcystis aeruginosa and Aulacoseira granulata in Lake Begnas, and Tabellaria fenestra in Lake Rupa were the dominant species. The zooplankton population and species varied irregularly. On the basis of chlorophyll a concentration in the euphotic zone and phytoplankton species composition, the lakes seem to be oligoeutrophic and to have some characteristics of temperate lakes rather than tropical lakes. Received: April 26, 1999 / Accepted: September 20, 1999  相似文献   

2.
1. There is much concern that filter‐feeding Asian carp will invade the Laurentian Great Lakes and deplete crucial plankton resources. We developed bioenergetic models, using parameters from Asian carp and other fish species, to explore the possibility that planktonic food resources are insufficient to support the growth of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) in the Great Lakes. 2. The models estimated basic metabolic requirements of silver and bighead carp under various body sizes, swimming speeds and reproductive stages. These requirements were then related to planktonic food resources and environmental temperature to predict when and where silver and bighead carp may survive in the Great Lakes, and how far they may travel. 3. Parameter values for respiration functions were derived experimentally in a coordinated study of silver and bighead carp, while consumption parameters were obtained from the literature on silver carp. Other model parameters lacking for Asian carp, such as those for egestion and excretion, were obtained from the literature on other fish species. 4. We found that full‐sized bighead carp required 61.0 kJ d?1 just to maintain their body mass at 20 °C, approximately equivalent to feeding in a region with 255 μg L?1 macrozooplankton (dry) or 10.43 μg L?1 chlorophyll a. Silver carp energy requirements were slightly higher. 5. When applied to various habitats in the Great Lakes, our results suggest that silver and bighead carp will be unable to colonise most open‐water regions because of limited plankton availability. However, in some circumstances, carp metabolism at lower temperatures may be low enough to permit positive growth even at very low rations. Positive growth is even more likely in productive embayments and wetlands, and the modelled swimming costs in some of these habitats suggest that carp could travel >1 km d?1 without losing biomass. 6. The simulation (and firmly hypothetical) results from this modelling study suggest when and where Asian carp could become established in the Great Lakes. Given the potential consequences to Great Lakes ecosystems if these filter feeders do prove capable of establishing reproducing populations, efforts to keep Asian carp out of the Great Lakes must not be lessened. However, we do encourage the use of bioenergetic modelling in a holistic approach to assessing the risk of Asian carp invasion in the Great Lakes region.  相似文献   

3.
This paper reports on seasonal changes in stable carbon and nitrogen isotope ratios of seston and muscle tissue of silver carp and bighead carp during 2004 and 2005, focusing primarily on the carbon sources and trophic relationships among phytoplankton, zooplankton and silver carp and bighead carp in a large fish pen of Meiliang Bay (Lake Taihu, China). δ13C showed a minimal value in March 2005 and a maximal value in August 2005 in seston both inside and outside the pen, whereas δ15N of seston showed the minimum in winter and the maximum during algal blooms. A positive correlation between δ13C of silver carp and that of seston suggested that temporal variation of δ13C in seston was preserved in fish via the food chain. The differences of δ13C among seston, zooplankton and muscle tissue of silver carp and bighead carp ranged only 0.2–1.7%, indicating that plankton production was the primary food source of filter-feeding fishes. According to a mass balance model, we estimated that the contributions of zooplankton to the diets of silver carp and bighead carp were 45.7% and 54.3%, respectively, based on the δ15N values of zooplankton and planktivorous fishes.  相似文献   

4.
Monthly zooplankton samples taken during the period February, 1977 to February, 1978 in the deepest portion in two shallow sub-tropical Lakes, Begnas and Rupa in the Pokhara Valley, Nepal were studied. Four peaks of zooplankton abundance were noted. Adult and copepodid Copepoda were numerically dominant in both lakes with 56% Copepoda, 24% Cladocera and 20% nauplii in Lake Begnas and 48% Copepoda, 36% Cladocera and 16% nauplii in Lake Rupa. Other forms like Chaoborus larvae occurred sporadically in both lakes. An occurrence of the rare Limnocnida nepalensis (Coelenterata: Limnomedusae) in Lake Rupa was also noted during April and May, 1977. Although both of these lakes had already been ranked as eutrophic, the absence of calanoids, relative abundance of Bosmina longirostris and higher gross primary production in Lake Rupa is an indication of a higher trophic condition than that of Lake Begnas.  相似文献   

5.
6.
Little is known about the reproductive biology of the exotic bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix in the Missouri River. In order to fill this gap in understanding, herein is described the reproductive condition of these Asian carps. Evidence is presented which indicates that bighead and silver carp in the Missouri River have a protracted spawning period that extends from early spring through fall and some individual bighead and silver carp are spawning multiple times during a reproductive season. Although bighead and silver carps are successfully maturing and spawning in the Missouri River some reproductive abnormalities such as intersex, atresia, and sterility were observed. Knowledge of the reproductive activity of these invasive carps may be useful to resource managers tasked with their control. Furthermore, the reproductive abnormalities observed should be considered when evaluating the environmental condition of the Missouri River relative to supporting a healthy fish fauna.  相似文献   

7.
用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践   总被引:68,自引:2,他引:66  
刘建康  谢平 《生态科学》2003,22(3):193-198
为了控制水体富营养化所形成的水华,国外经典的生物操纵论者提倡放养食鱼性鱼类以控制食浮游生物的鱼类,藉此壮大浮游动物种群,然后借助浮游动物遏制藻类.按照这条思路,以浮游生物为食的鲢和鳙应该是清除的对象.本文作者认为我国湖泊中危害性最大的是微囊藻水华,而浮游动物根本不能摄食这种水华,不如直接利用鲢鳙进行控制,因而1989-1992年间在武汉的东湖进行了三次原位围隔试验,2000年再度重复了一次围隔试验,结果证明,迄今在东湖中已消失18年的微囊藻水华,重新出现在不养鱼的围隔里.在养入一定密度的鲢或/和鳙的围隔中,就没有水华出现.已经出现水华的围隔,放入适当密度的鲢或/和鳙后,在短期内水华又复消失;而放入草鱼的围隔,则水华始终持续,不受影响.说明鲢和鳙能有效地遏制微囊藻水华.鲢、鳙遏制水华的有效放养密度(亦即有效生物量)为46-50g·m-3.东湖湖泊中鲢、鳙的生物量,直到1985年才达到这个水平,所以1985年湖里反常地没有出现水华.往后的年份,东湖的鱼产量越来越高,也就是湖里鲢、鳙的生物量越来越大,所以迄今没有微囊藻卷土重来的机会.东湖的水质和其他非生物条件仍适于蓝藻水华的发生与发展,如果东湖鲢、鳙的产量下降到阈值以下,亦即降到1985年以前1000t水平,那么微囊藻及其它蓝藻水华的重来将是不可避免的.经典的生物操纵论学说和措施不能解决微囊藻水华猖獗的问题.相反,用滤食浮游生物的鲢和鳙直接遏制微囊藻却是有实验根据并已被渔业生产实践证明行之有效的.  相似文献   

8.
Silver and bighead carp were stocked in a large pen to control the nuisance cyanobacterial blooms in Meiliang Bay of Lake Taihu. Plankton abundance and water quality were investigated about once a week from 9 May to 7 July in 2005. Biomass of both total crustacean zooplankton and cladocerans was significantly suppressed by the predation of pen-cultured fishes. There was a significant negative correlation between the N:P weight ratio and phytoplankton biomass. The size-selective predation by the two carps had no effect on the biomass of green alga Ulothrix sp. It may be attributed to the low fish stocking density (less than 40 g m−3) before June. When Microcystis dominated in the water of fish pen, the pen-cultured carps effectively suppressed the biomass of Microcystis, as indicated by the significant decline of chlorophyll a in the >38 μm fractions of the fish pen. Based on the results of our experiment and previous other studies, we conclude that silver and bighead carp are two efficient biomanipulation tools to control cyanobacterial (Microcystis) blooms in the tropical/subtropical eutrophic waters. Moreover, we should maintain an enough stocking density for an effective control of phytoplankton biomass.  相似文献   

9.
The suitability of exotic carps namely Aristichthys nobilis (Bighead carp), Hypophthalmichthys molitrix (Silver carp), Ctenopharyngodon idellus (Grass carp), Cyprinus carpio (Common carp) and Labeo rohita (Rohu) in a sub-tropical lake was evaluated. The impact of their introduction on native fishes was also studied. After the introduction and cage culture of exotic carps the total harvest reached 92 kg·ha–1; an increase of 266% within eight years. The planktivorous bighead and silver carps were most successful. The harvest of the other three species was poor. Since the introduction of exotic carp the harvest of indigenous fishes declined by 42%. Considering the food habits of these fish, further stocking should be limited to bighead and silver carps to limit the adverse effects on the indigenous species.  相似文献   

10.
Bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix have been two economically important aquaculture species in China for centuries. In the past decades, bighead and silver carp have been introduced from the Yangtze River to many river systems in China, including the Pearl River, in annual, large-scale, stocking activities to enhance wild fisheries. Nonetheless, few studies have assessed the ecological or genetic impacts of such introductions on native conspecific fish populations. An mtDNA D-loop segment of 978 bp from 213 bighead carp samples from 9 populations and a 975 bp segment from 204 silver carp samples from 10 populations were obtained to evaluate genetic diversity and population integrity. Results from a haplotype network analysis revealed that most haplotypes of the Pearl River clustered with those of Yangtze River origin and only a small proportion were distinct, suggesting that both the native Pearl River bighead and silver carp populations are currently dominated by genetic material from the Yangtze River. The genetic diversity of Pearl River populations is high in both species because of this inter-population gene flow, but the diversity of native Pearl River populations is low. To preserve the native genetic diversity, stocking of non-native fingerlings should cease immediately and native Pearl River bighead and silver carp fish farms should be established. This research demonstrates the danger to native biodiversity across China because of the substantial, ongoing stock-enhancement activities without prior genetic assessment.  相似文献   

11.
The growth and photosynthetic activities of Cyanobacteria passed through the gut of silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), and tilapia (Oreochromis niloticus) were compared with those of phytoplankton taken directly from Lake Taihu during a 13-day in situ dialysis culture. After the first 3–5 days of reduced activity after excretion by silver carp and bighead carp, the photosynthetic activity of Cyanobacteria recovered and rose significantly higher (P < 0.01) than levels in the control population, whereas there was a notable reduction of photosynthetic activity after passage through tilapia gut. The phytoplankton biomass showed a 2- to 3-fold increase of growth, and extracellular polysaccharide production was also stimulated after passage through silver carp and bighead carp gut. Chlorophyta fluorescence was detected at much higher levels than that of Cyanobacteria and Bacillariophyta after passage through tilapia gut. Scenedesmus obliqnus and Chlamydomonas sp. contributed much to the growth of the Chlorophyta during the in situ cultivation. However, the total phytoplankton biomass showed a distinct reduction in the tilapia treatment during the culture. The study indicated that Nile tilapia feeding and defecation may help remove Cyanobacteria from the water column and favor a community shift to Chlorophyta.  相似文献   

12.
武汉东湖鲢、鳙生长的几个问题的研究   总被引:2,自引:1,他引:1  
采用退算法研究东湖鲢、鳙的生长,包括生长的基本模式,瞬时生长率及其变动,雌、雄鱼生长的差异等问题:1)鲢、鳙的生长模式可用von Bertalanffy方程来描述,其中鲢的参数l∞=99.8厘米、W∞=17,104克、K=0.3040、t0=0.4821年,鳙的参数l∞=117.6厘米、W∞=29,311克、K=0.3088、t0=0.5392年;2)鲢、鳙的瞬时生长率随着年龄的增长而逐渐下降,并且不同世代同龄鱼的瞬时生长率有一定的变动,其变差系数与年龄呈正相关;3)鲢、鳙的生长无显著的性别差异。通过对研究结果的综合分析,阐述了鲢、鳙4龄前后出现生长的拐折主要由其个体大小所制约,种群的不同世代和同一世代的不同个体一样存在生长补偿作用,以及瞬时生长率与肥满系数之间有着明显的对应关系。所取得的有关参数值可以应用于渔业估算。    相似文献   

13.
不同日照时数对鲤,鲢,鳙鱼苗生长和存活的影响   总被引:4,自引:0,他引:4  
不同日照时数对鲤、鲢、鳙鱼苗生长和存活的影响王吉桥,赵德树,张景全(大连水产学院养殖系,116023)(大连市碧流河水库渔场,116428)EffectofPholoperiodontheGrowthandSurvivalofSilverCarp,B...  相似文献   

14.
Invasive bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are reproductively isolated in their native range, but form a bimodal, multigenerational hybrid swarm within the Mississippi River Basin (MRB). Despite observed F1 hybrid superiority in experimental settings, effects of postzygotic selection on bighead and silver carp hybrids have not been tested in a natural system. Individual parent and hybrid genotypes were resolved at 57 species‐specific loci and used to evaluate postzygotic selection for body condition (Wr) and female reproductive potential (presence of spawning stage gonads and gonadosomatic index [GSI]) in the MRB during 2009–2011. Body condition in the Marseilles Reach, Illinois River declined with a decrease in species‐specific allele frequency from 1.0 to 0.4 for each species and early generation hybrids (F1, F2, and first‐generation backcross) had lower mean Wr than late generation hybrids (2nd+ generation backcrosses) and parentals. Proportions of stage IV and stage V (spawning stage) female gonads differed between bighead and silver carp, but not among parentals and their early and late generation hybrids within the MRB. Mean GSI values did not differ between parentals and hybrids. Because reproductive potential did not differ between hybrids and parentals, our results suggest that early generation hybrids occur in low frequency either as a factor of poor condition (Wr) and postreproductive survival, infrequent reproductive encounters by parental bighead and silver carp, or selection pressures acting on juvenile or immature life stages. Our results suggest that a combination of genetic and environmental factors may contribute to the postzygotic success of bighead and silver carp hybrids in the Mississippi River Basin.  相似文献   

15.
Invasive Asian carps Hypophthalmichthys spp. are an ecological threat to non-native aquatic ecosystems throughout the world, and are poised to enter the Laurentian Great Lakes. Little is known about how these filter-feeding planktivores grow and impact zooplankton communities in mesotrophic to oligotrophic systems like the Great Lakes. Our purpose was to determine how different plankton densities affect bighead carp H. nobilis biomass and how bighead carp affect zooplankton species composition. We conducted a 37-day indoor mesocosm experiment (volume = 678 l) with high and low plankton treatments (zooplankton dry mass ≈ 1,900 and 700 μg l−1; chlorophyll a = 25 and 14 μg l−1, respectively) in the presence and absence of juvenile bighead carp (mean = 5.0 g, 8.5 cm). Carp lost weight in the low plankton treatment and gained weight in the high plankton treatment, suggesting that food availability may be a limiting factor to bighead carp growth in regions of low plankton densities. In the presence of carp, zooplankton shifted from Daphnia to copepod dominance, while in the absence of carp, Daphnia remained dominant. Chydorids and ostracods increased in the presence of carp, but only in the low plankton treatment, suggesting that the impact of bighead carp on zooplankton species composition may vary with zooplankton density. Chlorophyll was higher in the absence of carp than in the presence. Chlorophyll and zooplankton densities in many Great Lakes ecosystems are substantially lower than our low treatment conditions, and thus our results suggest that Asian carp establishment in these regions may be unlikely. Handling editor: S. Declerck  相似文献   

16.
This paper studied the sources of food and the trophic levels of silver and bighead carps using stable isotopes (δ13C and δ15N) analysis in Lake Qiandao and Lake Taihu. The δ13C values of POM and phytoplankton indicated that Particulate Organic Matter (POM) is of terrestrial origin in LQ and phytoplankton origin in LT. The different signature of δ15N of phytoplankton and POM also showed the different extent of anthropogenic impacts on the two lakes, with higher impacts in LT than in LQ. In LQ the trophic levels of silver and bighead carps were significantly different (2.48 ± 0.19 and 2.66 ± 0.19, respectively), while in LT the difference was not significant (2.15 ± 1.54 and 2.36 ± 0.38, respectively). Using a mixing model, we found that silver and bighead carps consumed a major proportion on phytoplankton and/or POM in both lakes with higher contribution of phytoplankton in more eutrophic lake. Silver and bighead carps had clear differentiation in food resources with silver carp more on POM and bighead more on zooplankton in deep and mesotrophic lakes. Contrary to this, both carps fed primarily on phytoplankton (and POM) and may have more niche overlaps in shallow and eutrophic lakes.  相似文献   

17.
1. Bigheaded carp, including both silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp, are successful invasive fishes that threaten global freshwater biodiversity. High phenotypic plasticity probably contributes to their success in novel ecosystems, although evidence of plasticity in several spawning traits has hitherto been largely anecdotal or speculative. 2. We collected drifting eggs from a Midwestern U.S.A. river from June to September 2011 and from April to June 2012 to investigate the spawning traits of bigheaded carp in novel ecosystems. 3. Unlike reports from the native range, the presence of drifting bigheaded carp eggs was not related to changes in hydrological regime or mean daily water temperature. Bigheaded carp also exhibited protracted spawning, since we found drifting eggs throughout the summer and as late as 1 September 2011. Finally, we detected bigheaded carp eggs in a river reach where the channel is c. 30 m wide with a catchment area of 4579 km2, the smallest stream in which spawning has yet been documented. 4. Taken with previous observations of spawning traits that depart from those observed within the native ranges of both bighead and silver carp, our findings provide direct evidence that bigheaded carp exhibit plastic spawning traits in novel ecosystems that may facilitate invasion and establishment in a wider range of river conditions than previously envisaged.  相似文献   

18.
Using a limnocorral study, Microcystis grazing by silver carp, bighead and tilapia was examined in an eutrophic shallow lake permanently infested with a Microcystis bloom. Twelve fingerlings of each fish species were introduced into the limnocorrals placed in the lake, in triplicate, and their grazing effects were examined over a period until the limnocorral bloom declined substantially and remained unchanged. Introduction of fish, regardless of species, into the limnocorrals resulted in sharp reductions (60–93%) of the initial Microcystis population on day 3 or 7. Maximum gross and net clearance of Microcystis were by silver carp followed by bighead and tilapia. Short-term high retention of Microcystis by tilapia indicated that the clearance effect did not last long due to a high rate of defaecation of undigested Microcystis . Nearly 6–180% nutrient enrichment of the limnocorrals was attributable to the defaecation of test fishes suggesting their ichthyoeutrophication potentials, which were in the following order: tilapia>bighead>silver carp. It is concluded that silver carp is most suitable for clearing Microcystis in the lake because of its minimal ichthyoeutrophication effect.  相似文献   

19.
Experiments were conducted to measure the suction volume of silver carp and bighead carp of age 1 + with respiratory chamber, and to calculate the suction volume and the filtering efficiency with respect to changes in concentrations of food particles. Suction volume (B. ml/mouth) and filtering efficiency (E. %) were calculated using the following formula: C 1=C0(1-BE/v)n where C0 and C1 were the concentrations of specific food particles at the beginning and at the end of experiment, respectively, V was the volume (ml) of experimental water, and n was the total number of observation of suction made during the experimental period. The relationships between suction volume (ml/mouth) of age I+ silver carp (Bh) and bighead carp (Ba) and their standard lengths (L, cm) were: B h=0.561L-8.94, Ba= 0.627L-7.48 while those of the fingerlings were: B h= O.l70L-0.837, Ba= 0.157L-0.418. The suction volume of the fingerlings was mainly affected by fish size, the function of temperature between 15 and 25° C being negligible. However, temperature affected filtering rate (filtered volume per unit time) through its effect on filtering frequency. The filtering efficiency of the fishes for rotifers (Brachionus caliciflorus) was 100 per cent. The relationships between filtering efficiency and sizes of food particles smaller than or equal to that of a rotifer were: E h=25.1 ln e.s.d. -13.6, Ea=22.2 In e.s.d. -33.1 where Eh and Ea were filtering efficiency of silver carp and bighead carp, respectively, and e.s.d. was the equivalent spherical diameter (μm) of food particles.  相似文献   

20.
  1. While invasions of large rivers by exotic fish species are well documented, assessing actual or potential impacts on native species is a challenge. Rapid assessments may be possible through the application of a combination of bioenergetic and population dynamic models.
  2. Paddlefish (Polyodon spathula) is a native species in the central USA with a history of population decline due to waterway development and overharvesting for roe. It is not known whether paddlefish are impacted by resource competition from invasive bigheaded carp populations, including silver (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), which have expanded dramatically in the Mississippi River.
  3. We used bioenergetic models to project the potential impact of invasive silver and bighead carp on zooplankton density and paddlefish somatic growth in backwater habitat. Bioenergetic outputs were translated to impacts on fecundity, becoming inputs for 50-year metapopulation simulations of backwater habitat connected to the main-stem Mississippi River by episodic flood events.
  4. Competition with carp reduced growth and increased the risk of population decline for paddlefish. Impacts increased disproportionately with increased carp abundance and were further exacerbated in scenarios with increased diet overlap or decreased zooplankton abundance.
  5. We also analysed paddlefish condition data collected at sites near the lower Mississippi River with varying histories of carp invasion. These data give credence to the bioenergetic model output; paddlefish had reduced body condition at sites with long-established, high-density carp populations.
  6. We conclude that invasive bigheaded carps have great potential to reduce paddlefish growth, fecundity, and abundance. The pairing of bioenergetics and population models is likely to be broadly useful in assessing the risks posed by other invasive species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号