首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Votta  J Keefer    S Mong 《The Biochemical journal》1990,270(1):213-218
Leukotriene B4 (LTB4) is an arachidonate metabolite which elicits a variety of pro-inflammatory responses by activation of a guanine-nucleotide-binding protein-coupled membrane receptor. As a prelude to receptor isolation and purification, we have established assay methods for LTB4 receptor solubilization and characterization from sheep lung membranes. [3H]LTB4 binding to the soluble receptor was saturable, specific, protein-concentration- and time-dependent and reversible. Binding of [3H]LTB4 was enhanced by divalent cations and inhibited by sodium ions in a manner analogous to its binding to the human leukocyte membrane receptor. Saturation binding yielded a dissociation constant (Kd) of 0.50 +/- 0.05 nM and a receptor density (Bmax) of 330 +/- 90 fmol/mg of protein for [3H]LTB4 binding to detergent-solubilized receptor. In competition experiments, the rank order of binding affinity was LTB4 greater than 20-OH-LTB4 greater than trans-homo-LTB4 greater than 6-trans-LTB4 greater than U-75302. Gel-filtration chromatography showed that the LTB4 receptor protein in the detergent micellar state has a molecular mass in the range 800-1000 kDa. These results demonstrate that the physiologically and pharmacologically important LTB4 receptor may be readily solubilized from sheep lung membranes without alteration in binding specificity and characteristics, suggesting that sheep lung membranes represent a rich source with which to pursue receptor isolation and purification.  相似文献   

2.
Specific binding of leukotriene B4 to guinea pig lung membranes   总被引:2,自引:0,他引:2  
We have demonstrated binding sites for LTB4 in guinea pig lung membranes. Binding of [3H]-LTB4 was of high affinity (Kd = 0.76 nM), saturable and linear with protein concentration (0.2-1.2 mg/ml). Scatchard and Hill's plot analysis indicated a single class of binding site with a Hill's coefficient of 0.99 +/- 0.08 (n = 4). [3H]-LTB4 was unmetabolized during incubation with membrane preparations, as indicated by high performance liquid chromatography. Divalent cations such as Mg2+ and Ca2+ enhanced binding capacity without changing the Kd. Na+ ions decreased binding in a concentration-dependent manner. Guanine nucleotides, GTP, GTP gamma S and Gpp(NH)p also decreased the number of binding sites. Finally, competition experiments demonstrated the following order of potency for displacement of [3H]-LTB4 from its receptor site: LTB4 greater than 20-OH-LTB4 much greater than 20-COOH-LTB4 = 6-trans-12-epi-LTB4 greater than LTC4 = LTD4 = 5-HETE. These data indicate that a specific LTB4 receptor, in addition to the previously documented LTC4 and LTD4 receptors, exists in guinea pig lung.  相似文献   

3.
Isolated human polymorphonuclear (PMN) leukocyte plasma membranes express high affinity (mean Kd = 0.12 nM) and low affinity (mean Kd = 50 nM) receptors for the chemotactic factor leukotriene B4 (5(S),12(R)-dihydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid; LTB4) that are similar to those on intact PMN leukocytes. A portion of high affinity LTB4-R on PMN leukocyte membranes were converted to the low affinity state by GTP (mean +/- SE = 28.6 +/- 14.0%) and nonhydrolyzable GTP analogues, such as 5'-guanylylimidodiphosphate (GMP-PNP), in a concentration-dependent, nucleotide-specific, and reversible manner, without altering the intrinsic binding affinities of either class. [3H]GMP-PNP bound specifically to one class of receptors (mean Kd = 13 nM) on PMN leukocyte membranes. The interdependence of the LTB4-binding membrane protein and guanine nucleotide-binding protein was suggested by the capacity of LTB4 to enhance by a maximum of 150% the binding of [3H]GMP-PNP to PMN leukocyte membranes by increasing the number, but not altering the affinity, of receptors for GMP-PNP. Pertussis toxin, but not cholera toxin, reversed the enhancement of binding of [3H]GMP-PNP produced by LTB4. Guanine nucleotide-binding proteins and high affinity LTB4-R thus exhibit a mutual regulation that differs mechanistically from that of peptide chemotactic factor receptors on PMN leukocytes.  相似文献   

4.
It is currently thought that pulmonary eosinophils play a proinflammatory role in bronchial asthma. Leukotriene B4 (LTB4) is being considered as an important mediator in regulating eosinophil function because of its potent activities in inducing leukocyte chemotaxis, chemokinesis, degranulation, and aggregation. Because the LTB4 receptor has not been characterized in eosinophils, we report in this study the presence of a functional high affinity receptor for LTB4 on guinea pig (GP) eosinophils. Scatchard analysis of saturation binding studies yielded a Kd of 1.4 +/- 0.2 nM (mean +/- SEM, n = 3) and a Bmax of 1.6 +/- 0.4 pmol/mg of protein for LTB4 in GP eosinophil membranes. A linear Scatchard plot was obtained, suggesting that GP eosinophil membranes expressed only a single high affinity LTB4 receptor population. Saturation binding studies in whole cells also yielded a linear Scatchard plot, with a Kd of 2.8 +/- 0.96 nM (mean +/- SEM, n = 4) and a Bmax of 4 x 10(4) +/- 6 x 10(3) receptors/cell. Competitive binding studies using several compounds with structures similar to that of LTB4 showed that these agents bound to the receptor in the following descending order of affinity (Ki, nM): LTB4 (0.96) less than TB3 (1.0) greater than 20-hydroxy-LTB4 (3.5) greater than 12(R)-hydroxy-5,8,14-cis,10-trans-eicosatetraenoic acid (20) greater than 12(S)-hydroxy-5,8,14-cis,10-trans-eicosatetraenoic acid (231) greater than 20-carboxy-LTB4 (350) greater than 5(S),12(S)-dihydroxy-6,10-trans,8,14-cis-eicosatetraenoic acid (541). This rank order of potency in binding affinity correlates closely with the ability of these compounds to induce both chemotaxis and superoxide anion generation. Analysis of the structure-activity relationship suggests that the 12R-hydroxyl group and a cis double bond at the C-6 position are important for optimal agonist binding to the LTB4 receptor present in GP eosinophil membranes. The results suggest that LTB4 may be an important chemoattractant for eosinophils in GP and may induce the release of reactive oxygen species from this cell.  相似文献   

5.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

6.
Specific binding sites for [3H]-1,3 di-ortho-tolylguanidine ([3H]-DTG), a selective radiolabeled sigma receptor ligand, were detected and characterized in sheep pineal gland membranes. The binding of [3H]-DTG to sheep pineal membranes was rapid and reversible with a rate constant for association (K+1) at 25 degrees C of 0.0052 nM-1.min-1 and rate constant for dissociation (K-1) 0.0515 min-1, giving a Kd (K-1/K+1) of 9.9 nM. Saturation studies demonstrated that [3H]-DTG binds to a single class of sites with an affinity constant (Kd) of 27 +/- 3.4 nM, and a total binding capacity (Bmax) of 1.39 +/- 0.03 pmol/mg protein. Competition experiments showed that the relative order of potency of compounds for inhibition of [3H]-DTG binding to sheep pineal membranes was as follows: trifluoperazine = DTG greater than haloperidol greater than pentazocine greater than (+)-3-PPP greater than (+/-)SKF 10,047. Some steroids (testosterone, progesterone, deoxycorticosterone) previously reported to bind to the sigma site in brain membranes were very weak inhibitors of [3H]-DTG binding in the present study. The results indicate that [3H]-DTG binding sites having the characteristics of sigma receptors are present in sheep pineal gland. The physiological importance of these sites in regulating the synthesis of the pineal hormone melatonin awaits further study.  相似文献   

7.
A radiolabeled N-(3-aminopropyl)-leukotriene B4 amide ([3H]LTB4-APA) analog of the potent leukocyte chemotactic factor leukotriene B4 (LTB4) binds to receptors for LTB4 in plasma membrane-enriched preparations from human blood polymorphonuclear leukocytes (PMNL) and intact PMNL with respective mean dissociation constants of 2.3 nM and 69 nM at 4 degrees C. The [3H]LTB4-APA bound to plasma membrane-enriched preparations from PMNL was covalently cross-linked to membrane proteins with disuccinimidyl suberate. Solubilization and resolution by SDS-PAGE of proteins from [3H]LTB4-APA-labeled PMNL membranes revealed predominant labeling of a 60-kDa protein. Labeling of the PMNL membrane protein was inhibited by LTB4 and its analogs at concentrations similar to those inhibiting the binding of [3H]LTB4 to its receptor, with an identical rank order of potency of LTB4 greater than 20-hydroxy-LTB4 greater than LTB4-APA = 5(S),12(R)-dihydroxy-eicosa-14-cis-6,8,10-trans-tetraenoic acid much greater than LTD4 = LTC4. GTP suppressed the labeling of the 60-kDa PMNL membrane protein to an extent consistent with the decrease in receptor affinity for LTB4 induced by GTP. The stereospecificity of the affinity cross-linking reaction and the regulation by GTP support the identification of an approximately 60-kDa protein as the binding component of the PMNL receptor for LTB4.  相似文献   

8.
A high amount of leukotriene B4 (LTB4) binding protein was observed in the porcine spleen. It was solubilized and partially purified from spleen membrane with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). Scatchard analysis indicated the presence of a single class of receptor with Kd and Bmax values of 0.26 nM and 120 fmol/mg protein, respectively. The receptor was specific for LTB4, and Ki values for 20-hydroxy- and 20-carboxy-LTB4, both inactive metabolites of LTB4, were 1.7 nM and over 1,000 nM, respectively. By the addition of 10 microM GTP gamma S, a low affinity binding site appeared with a Kd value of 390 nM. A pretreatment of the receptor-GTP binding protein complex with islet-activating protein (IAP) increased the inhibitory effect of GTP gamma S on LTB4 binding, indicating that the LTB4 receptor is coupled with an IAP-sensitive GTP-binding protein in the porcine spleen.  相似文献   

9.
In the present study, the mechanism of LTB4 receptor down regulation by protein kinase C (PKC) has been investigated using porcine neutrophil membranes. Pretreatment of intact porcine neutrophils with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 2 min prior to the preparation of plasma membrane, demonstrated a reduced binding sites (Bmax) for LTB4 without altering the receptor affinity (Kd). This effect of TPA on LTB4 receptor binding was found to be due to the activation of PKC as membrane treated with purified PKC (type III) produced the same effect. When membranes from neutrophils pretreated with TPA were exposed to non-hydrolyzable GTP analog, GTP-gamma S, or GMP-PNP, no further decrease in receptor Kd was observed, while the Bmax was reduced to the level observed in TPA treated samples. Treatment of isolated neutrophil membranes with purified PKC reduced the Bmax and blocked the effect of GTP analogs on the receptor affinity. These results suggest that, PKC interrupts the receptor binding to G-protein.  相似文献   

10.
The incubation of HL-60 human promyelocytic leukemia cells for 7 days with 100 nM 1 alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3] induced differentiation into monocyte-like cells, as assessed by morphologic and biochemical characteristics. Stereospecific receptors for leukotriene B4 (LTB4) developed on the surface of the HL-60 cell-derived monocytes that had the capacity to transduce LTB4 stimulation of a transient increase in the cytosolic concentration of calcium ([Ca+2]in). HL-60 cell-derived monocytes, but not undifferentiated HL-60 cells, expressed a high affinity subset of 6400 +/- 3700 receptors per cell with a dissociation constant (Kd) of 2.3 +/- 1 nM (mean +/- SD, n = 3) and a low affinity subset of approximately 2.2 X 10(6) receptors per cell with an apparent Kd of 680 +/- 410 nM. Derivatives of LTB4 inhibited the binding of [3H]LTB4 to HL-60 cell-derived monocytes with a rank order of potency of LTB4 greater than 20-OH-LTB4 greater than 3-aminopropyl amide-LTB4, which is similar to the order for LTB4 receptors of human blood PMNL. In contrast, leukotrienes C4 and D4 and formyl-methionyl chemotactic peptides did not inhibit the binding of [3H] LTB4, which demonstrates the specificity of these receptors for isomers of 5,12-dihydroxy-eicosatetraenoic acid. LTB4 stimulated an increase in [Ca+2]in in HL-60 cell-derived monocytes which reached 50% of the maximal level at an LTB4 concentration of 0.5 nM (EC50). Preincubation of HL-60 cell-derived monocytes with 10 nM LTB4 resulted in a selective loss of high affinity receptors, as assessed by binding of [3H]LTB4, and a 200-fold increase in the EC50 for stimulation by LTB4 of increases in [Ca+2]in, without alterations in either the low affinity receptors for LTB4 or the responsiveness of [Ca+2]in to formyl-methionyl chemotactic peptides. HL-60 cells that are induced to differentiate into monocytes thus develop stereospecific receptors for LTB4 with binding and transductional characteristics similar to those of human blood PMNL.  相似文献   

11.
Unsealed membranes from human erythrocytes bind GTP and GTP analogs according to first order kinetics, a single rate constant being observed. With [35S]GTP gamma S this is 0.15 +/- 0.2 min-1. Treatment of the membranes with detergents decreases binding considerably. Scatchard plots reveal uncomplicated patterns of ligand association, with Kd values of 10.2 +/- 2.3 nM [35S]GTP gamma S, of 18.2 +/- 4.3 nM [alpha-32P]GTP and of 28.6 +/- 3.5 nM [alpha-32P]GDP, respectively. The stoichiometry with the three ligands is strictly comparable, i.e. 65 +/- 7 picomoles/mg of membrane protein. Binding of each labeled nucleotide is competitively inhibited by the other two unlabeled ligands, the inhibition constants being very close to the corresponding Kd values. Metabolic depletion and subsequent repletion of intact erythrocytes result in membrane preparations still active in guanine nucleotide binding, with unmodified Kd values. However, the stoichiometry falls to 35 picomoles/mg protein with the "depleted" erythrocyte membranes and regains higher values (50 picomoles/mg protein) with the "repleted" cell membranes. Accordingly, the "in situ" characterization of guanine nucleotide-binding properties of erythrocyte membranes seems to represent a new tool for monitoring the metabolic state of intact erythrocytes.  相似文献   

12.
Basal adenylate cyclase activity was similar in plasma membranes prepared from the lungs of 12 week old spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). However, sensitivity to Gpp[NH]p, isoproterenol plus GTP or Gpp[NH]p was significantly greater in the SHR. Beta-receptor density measured by [3H]DHA binding was unaltered. The dissociation constant, Kd, revealed a significantly greater binding affinity of the radioligand in the SHR (6.23 +/- 0.45 nM) compared with the WKY (8.53 +/- 0.82 nM). Activity of Gs was assessed by complementing S49 cyc- acceptor membranes with lung cholate extract. Basal activity of the reconstituted system was decreased 43% in the SHR. However, sensitivity to NaF, Gpp[NH]p, and isoproterenol plus Gpp[NH]p was significantly elevated. These data suggest that desensitization of the adenylate cyclase complex is not a generalized response to chronic hypertension. A tissue specific increase in sympathetic drive appears to be responsible for the lowered concentration of cardiac beta-adrenoceptors in the SHR. In contrast, both indirect and direct evidence indicate an enhanced functional sensitivity of pulmonary Gs in the hypertensive rats.  相似文献   

13.
The goal of these experiments was to identify and characterize binding sites in the rat hypothalamus for the peptide, pituitary adenylate cyclase activating polypeptide (PACAP). The 27 amino acid form of PACAP (PACAP27) was used as the radiolabeled ligand in these experiments. Binding of [125I]PACAP27 to hypothalamic membrane preparations was rapid, reversible on addition of unlabeled peptide, and at least partially regulated by GTP. Nonhydrolyzable GTP analogs, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), guanosine-5'-(2-thiodiphosphate) (GDP beta S), and guanylylimidophosphate (GppNHp) also displaced [125I]PACAP27 binding to hypothalamic membrane preparations in a dose-dependent manner. The order of potency for the three analogs was GTP gamma S greater than GDP beta S greater than GppNHp. Both forms of the peptide, PACAP27 and PACAP38, were highly potent in displacing bound [125I]PACAP27, whereas VIP or PACAP(1-23) were unable to displace binding at concentrations of up to 500 nM. Scatchard analysis of the PACAP27 and PACAP38 displacement curves revealed that the fit of both curves was consistent with a single class of high-affinity binding sites, although the site exhibited a greater affinity for PACAP38 compared with PACAP27 (PACAP27 Kd = 1452 +/- 59 pM; PACAP38 Kd = 175 +/- 13 pM; Bmax 23.2 +/- 1.1 pmol/mg protein). The possibility of the existence of a class of binding sites with extremely low affinity cannot be discounted. After covalent cross-linking of [125I]PACAP27 with its receptor, the molecular weights of the complexes were estimated by electrophoresis and autoradiography. A major band of 60 Kd was evident when membranes were incubated with VIP or PACAP(1-23). Previous incubation with unlabeled PACAP27 or PACAP38 eliminated visualization of this band. These results suggest that a specific, high-affinity binding site for PACAP27 is present in rat hypothalamus, and that this site shows a greater affinity for PACAP38 compared with PACAP27. The molecular weight of the peptide-receptor complex is 60,000 kDa, and therefore the receptor itself has an apparent molecular weight 57,000.  相似文献   

14.
A new type of VIP receptor was characterized in human SUP-T1 lymphoblasts. The order of potency of unlabeled peptides, in the presence of [125I]helodermin, was: helodermin(1-35)-NH2 = helodermin(1-27)-NH2 greater than helospectin greater than VIP = PHI greater than [D-Ser2]VIP greater than [D-Asp3]VIP greater than [D-His1]VIP greater than or equal to [D-Ala4]VIP greater than or equal to secretin = GRF. This specificity was distinct from that of all VIP receptors described so far in that: (i) the affinity for helodermin (Kd = 3 nM) was higher than that of VIP (Kd = 15 nM) and PHI (Kd = 20 nM); and (ii) position 4 played an important role in ligand binding. The labeled sites were likely to be functional receptors as adenylate cyclase in crude lymphoblastic membranes (200-10,000 x g pellets) was stimulated by peptides, in the presence of GTP, with the following order of potency: helodermin(1-35)-NH2 greater than helodermin(1-27)-NH2 greater than helospectin = VIP = PHI.  相似文献   

15.
Peripheral blood polymorphonuclear leukocytes (PMNL) isolated from rabbits after an i.v. injection of endotoxin exhibited decreased chemotactic migration in response to leukotriene B4 (LTB4) and C5a, but not N-formyl-methionyl-leucyl-phenylalanine (fMLP), after endotoxin treatment. The binding of radiolabeled LTB4, fMLP, and C5a to isolated PMNL was assessed in order to determine whether altered receptor expression could account for the observed functional changes. Control PMNL expressed binding sites for fMLP, LTB4, and C5a similar to those previously characterized from human PMNL. Control PMNL expressed a single class of 14,600 +/- 2700 receptors for fMLP with a mean dissociation constant (Kd) of 2.0 +/- 0.6 nM at 0 degrees C, whereas two subclasses of binding sites were expressed for LTB4: 10,300 +/- 6800 high-affinity and 85,600 +/- 53,000 low-affinity binding sites per PMNL with mean Kd for LTB4 of 0.75 +/- 0.43 nM and 70 +/- 58 nM (mean +/- SD, n = 5), respectively. Control PMNL bound [125I]-C5a in a dose-dependent and saturable manner at 24 degrees C. At saturating concentrations of C5a, PMNL obtained from control rabbits bound 270,000 +/- 50,000 molecules of [125I]-C5a with half-maximal binding occurring at [125I]-C5a concentrations of 5.5 +/- 1.9 nM. The binding of LTB4 and C5a to PMNL obtained 24 hr after an i.v. injection of endotoxin was markedly decreased compared with control PMNL. PMNL from endotoxin-treated rabbits exhibited 68% fewer high-affinity binding sites per PMNL for LTB4 and a 51% decrease in the amount of [125I]-C5a bound at saturating concentrations compared with control PMNL. There was no significant change in the Kd of the high-affinity binding sites for LTB4, no change in the Kd and number of the low-affinity binding sites for LTB4, and a small decrease in the apparent Kd for C5a to 3.3 +/- 1.1 nM. Even though the pretreatment with i.v. endotoxin did not alter chemotactic or degranulation responses elicited by fMLP, the endotoxin pretreatment induced an eightfold increase in the receptor density without altering the Kd for fMLP. Decreased receptor expression could account in large part for the decreased chemotactic responsiveness towards C5a and LTB4 induced by LPS. The finding that a substantial increase in receptors for fMLP need not be accompanied by a comparable functional change suggests that decreased efficiency in receptor coupling to intracellular biochemical events may also result from i.v. endotoxin.  相似文献   

16.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

17.
The effect of purified protein kinase C (PKC) on dopamine D2 receptor binding was studied. Saturation binding with [3H]spiperone was not affected. In competition experiments using agonists PKC-treated membranes showed a significant reduction in the proportion of high affinity sites, and the influence of GTP gamma S was abolished. These results suggest that PKC-dependent mechanisms can regulate the coupling between the dopamine D2 receptor and its G-protein.  相似文献   

18.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Although the platelet ADP receptor is thought to exhibit a high degree of structural selectivity, adenosine 5'-O-(thiotriphosphate) (ATP alpha S) is a potent inhibitor of ADP-induced platelet activation and has been recently shown to bind with high affinity (Kd 3 +/- 0.1 nM) to formaldehyde-fixed platelets and to be photoincorporated into an 18-kDa fragment beginning at Tyr-198 of glycoprotein (GP) IIb alpha (Greco, N. J., Yamamoto, N., Jackson, B. W., Tandon, N. N., Moos, M., Jr., and Jamieson, G. A. (1991) J. Biol. Chem. 266, 13627-13633). Further studies have now shown that guanosine 5'-O-(thiotriphosphate) (GTP alpha S) also binds to high affinity sites (Kd 4.7 +/- 0.9 nM; 13,600 +/- 1,140 sites/platelet) and to low affinity sites (Kd 470 +/- 85 nM; 135,900 +/- 19,400 sites/platelet). Competition binding studies showed that all GTP alpha S binding sites were accessible to ADP and vice versa. The corresponding pyrimidine nucleotide cytidine 5'-O-(thiotriphosphate) (CTP alpha S) was found to be similarly effective in competing in the binding of ADP and both 5'-O-(thiotriphosphates) as well as uridine 5'-O-(thiotriphosphate) (UTP alpha S) were potent inhibitors of platelet shape change and aggregation. Ultraviolet irradiation of platelets in the presence of either [35S]GTP alpha S or [35S]UTP alpha S resulted in their specific incorporation into the alpha chain of GPIIb as previously shown with [35S]ATP alpha S. These results show that the structure of the nucleotide base has little influence on its ability to occupy the ADP-binding site on platelets, to function as an inhibitor of ADP-induced activation or to be photoincorporated into GPIIb alpha.  相似文献   

20.
D-[35S(U)]myo-inositol 1,4,5-trisphosphorothioate [( 35S]InsPS3), a synthetic, metabolically stable analogue of inositol 1,4,5-trisphosphate (InsP3), binds with high affinity (Kd 58.6 +/- 9.1 nM) to rat cerebellar membranes revealing a high density of specific binding sites (Bmax 21.5 +/- 2.1 pmol/mg of protein). Comparison with [3H]InsP3 binding reveals a higher density of sites labelled by [35S]InsPS3 and complex competition curves for displacement of specific [35S]InsPS3 by InsP3. The results suggest that [35S]InsPS3 labels two sites in rat cerebellar membranes with equal affinity: the InsP3 receptor and a site that displays low affinity for InsP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号