首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HeLa was the first human cell line established (1952) and became one of the most frequently used lines because of its hardiness and rapid growth rate. During the next two decades, the development of other human cell lines mushroomed. One reason for this became apparent during the 1970s, when it was demonstrated that many of these cell lines had been overgrown and replaced by fast-growing HeLa cells inadvertently introduced into the original cultures. Although the discovery of these "HeLa contaminants" prompted immediate alarm, how aware are cell culturists today of the threat of cell line cross-contamination? To answer this question, we performed a literature search and conducted a survey of 483 mammalian cell culturists to determine how many were using HeLa contaminants without being aware of their true identity and how many were not using available means to ensure correct identity. Survey respondents included scientists, staff, and graduate students in 48 countries. HeLa cells were used by 32% and HeLa contaminants by 9% of survey respondents. Most were also using other cell lines; yet, only about a third of respondents were testing their lines for cell identity. Of all the cell lines used, 35% had been obtained from another laboratory instead of from a repository, thus increasing the risk of false identity. Over 220 publications were found in the PubMed database (1969-2004) in which HeLa contaminants were used as a model for the tissue type of the original cell line. Overall, the results of this study indicate a lack of vigilance in cell acquisition and identity testing. Some researchers are still using HeLa contaminants without apparent awareness of their true identity. The consequences of cell line cross-contamination can be spurious scientific conclusions; its prevention can save time, resources, and scientific reputations.  相似文献   

2.
3.
Undifferentiated pleomorphic sarcoma (UPS) is an aggressive mesenchymal malignancy requiring novel therapeutic approaches to improve clinical outcome. Patient-derived cancer cell lines are an essential tool for investigating molecular mechanisms underlying cancer initiation and development; however, there is a lack of patient-derived cell lines of UPS available for research. The objective of this study was to develop a patient-derived cell model of UPS. A cell line designated NCC-UPS2-C1 was established from the primary tumor tissue of an 84-yr-old female patient with UPS. The short tandem repeat pattern of NCC-UPS2-C1 cells was identical to that of the original tumor and distinct from that of any other cell lines deposited in public cell banks. NCC-UPS2-C1 cells were maintained as a monolayer culture for over 80 passages during 30 mo and exhibited spindle-like morphology, continuous growth, and ability for spheroid formation and invasion. Proteomic profiling using mass spectrometry and functional treemap analysis revealed that the original tumor and the derived NCC-UPS2-C1 cells had similar but distinct protein expression patterns. Our results indicate that a novel UPS cell line was successfully established and could be used to study UPS development and effects of anti-cancer drugs. However, the revealed difference between proteomes of the original tumor and NCC-UPS2-C1 cells should be further investigated to determine the appropriate applications of this cell line in UPS research.  相似文献   

4.
5.
Animal cell lines are important resources for research and diagnostic applications. Cross-contamination and misidentification of cell lines, however, can cause major problems for research (for example, false results that come from contamination cells may mislead the science). Hence, it is imperative to routinely monitor cell lines for identity and authenticity. Here, we extend our previous work on identification and authentication of animal cell culture by polymerase chain reaction (PCR) amplification and DNA sequencing. A PCR-based method for rapid identification and authentication of closely related cell lines was described. In this method, two new primers were designed based on high homology in the aldolase gene family. Used together with our previous primers, the combinations of primers were able to differentiate closely related species, including human from monkey and mouse from rat. This PCR assay provides a rapid, simple, sensitive, and cost-effective method for authentication of closely related cell lines. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the funding agency.  相似文献   

6.
The development and progression of human tumors often involves inactivation of tumor suppressor gene function. Observations that specific chromosome deletions correlate with distinct groups of cancer suggest that some types of tumors may share common defective tumor suppressor genes. In support of this notion, our initial studies showed that four human carcinoma cell lines belong to the same complementation group for tumorigenic potential. In this investigation, we have extended these studies to six human soft tissue sarcoma cell lines. Our data showed that hybrid cells between a peripheral neuroepithelioma (PNET) cell line and normal human fibroblasts or HeLa cells were nontumorigenic. However, hybrid cells between the PNET cell line and five other soft tissue sarcoma cell lines remained highly tumorigenic, suggesting at least one common genetic defect in the control of tumorigenic potential in these cells. To determine the location of this common tumor suppressor gene, we examined biochemical and molecular polymorphic markers in matched pairs of tumorigenic and nontumorigenic hybrid cells between the PNET cell line and a normal human fibroblast. The data showed that loss of the fibroblast-derived chromosome 17 correlated with the conversion from nontumorigenic to tumorigenic cells. Transfer of two different chromosome 17s containing a mutant form of the p53 gene into the PNET cell line caused suppression of tumorigenic potential, implying the presence of a second tumor suppressor gene on chromosome 17.  相似文献   

7.
Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors will serve as invaluable tools for advancing schwannomatosis research, including drug screening.  相似文献   

8.
Cell culture systems allow key insights into biological mechanisms yet suffer from irreproducible outcomes in part because of cross-contamination or mislabeling of cell lines. Cell line misidentification can be mitigated by the use of genotyping protocols, which have been developed for human cell lines but are lacking for many important model species. Here, we leverage the classical observation that transposable elements (TEs) proliferate in cultured Drosophila cells to demonstrate that genome-wide TE insertion profiles can reveal the identity and provenance of Drosophila cell lines. We identify multiple cases where TE profiles clarify the origin of Drosophila cell lines (Sg4, mbn2, and OSS_E) relative to published reports, and also provide evidence that insertions from only a subset of long-terminal repeat retrotransposon families are necessary to mark Drosophila cell line identity. We also develop a new bioinformatics approach to detect TE insertions and estimate intra-sample allele frequencies in legacy whole-genome sequencing data (called ngs_te_mapper2), which revealed loss of heterozygosity as a mechanism shaping the unique TE profiles that identify Drosophila cell lines. Our work contributes to the general understanding of the forces impacting metazoan genomes as they evolve in cell culture and paves the way for high-throughput protocols that use TE insertions to authenticate cell lines in Drosophila and other organisms.  相似文献   

9.
The haploid stage of gametophytes of the subtidal brown alga Undaria pinnatifida can be vegetatively propagated under favorable conditions. This unique characteristic makes it possible to establish independent gametophyte cell lines that are zoospore‐derived. Sporophytic offspring can be generated through hybridizing the male and female gametophytes, which are derived from different cell lines. Accumulated experiences in this and other species in Laminariales demonstrated the applicability of this novel way to breed desired strains for open‐sea cultivation. Sporophytic offspring originated from mono‐crossing of male and female gametophyte clones were shown to have similar morphological characteristics under identical ambient conditions. However, there has been no report to relate this similarity on molecular levels. In this report, amplified fragment length polymorphism (AFLP) and microsatellite markers were used to analyze the genetic identity of sporophytic offspring of U. pinnatifida originated from two mono‐crossing lines (M1 and M2), two self‐breeding lines (S1 and S2) and one wild population (W). Totally 318 AFLP loci were revealed by use of 11 primer sets, of which 4.7%, 0.3%, 17.9%, 16.4% and 36.5% were polymorphic in M1, M2, S1, S2 and W, respectively. The pairwise genetic identity among the individuals of the same line was assessed. It was shown that offspring from mono‐crossing lines had a higher degree of identity (95.6–100%) than self‐breeding lines (87.7–98.4%) and the wild population (81.5–92.1%). Analysis by use of six microsatellite loci also revealed a higher genetic identity among individuals of the mono‐crossing line, further confirming the results of AFLP analysis. Results from this investigation support, on molecular levels, the novel way to produce and maintain strains in U. pinnatifida by use of different gametophyte cell lines.  相似文献   

10.
Continuous cell lines are widely used in cell biology and serve as model systems in basic and applied research. Fundamental requirements for the use of cell lines are a well-identified origin and the exclusion of cross-contamination by prokaryotic or eukaryotic cells. Because the cross-contamination of one cell line with another cell line may occur in a concealed manner, special emphasis must be taken to (1) prevent such an "accident" and (2) monitor regularly the identity of the cell line(s) in use. Apart from human cell lines, mouse-, rat-, and hamster-derived cell lines are used in basic cell culture and biotechnology. We established a polymerase chain reaction (PCR) assay to detect and confirm the species origin for these species and to detect interspecies cross-contamination. Our PCR method is based on oligonucleotide primers annealing to specific sequences in the beta-globin gene, which were designed to amplify one deoxyribonucleic acid (DNA) segment only per analyzed sample. We confirmed the species identity of 82 cell lines as human, mouse, rat, and Syrian hamster by beta-globin PCR. The DNAs from eight additional cell lines of less frequently used species were not amplified with the primers chosen. Cross-contamination of 5-10% of either mouse or rat DNA was detectable. One species-specific primer pair was sufficient for confirmation of the expected species, and for identification of an unknown cell line the combination of two or more primer pairs is suggested. Our PCR assay represents a powerful, fast, easy, robust, and inexpensive method for speciation and does not need any elaborate sequencing or computer-based analysis system.  相似文献   

11.
Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL). Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stability of the induced tumours and the ability to resemble the original material. CLBL-1 was injected into Rag2(-/-)γ(c) (-/-) mice. The generated tumor material was analysed by immunophenotyping and histopathology and used to establish the cell line CLBL-1M. Both cell lines were karyotyped for detection of chromosomal aberrations. Additionally, CLBL-1 was stimulated with IL-2 and DSP30 as described for primary canine B-cell lymphomas and NHL to examine the stimulatory effect on cell proliferation. CLBL-1 in vivo application resulted in lymphoma-like disease and tumor formation. Immunophenotypic analysis of tumorous material showed expression of CD45(+), MHCII(+), CD11a(+) and CD79αcy(+). PARR analysis showed positivity for IgH indicating a monoclonal character. These cytogenetic, molecular, immunophenotypical and histological characterisations of the in vivo model reveal that the induced tumours and thereof generated cell line resemble closely the original material. After DSP30 and IL-2 stimulation, CLBL-1 showed to respond in the same way as primary material. The herein described CLBL-1 in vivo model provides a highly stable tool for B-cell lymphoma research in veterinary and human medicine allowing various further in vivo studies.  相似文献   

12.
To establish a potential resource for cell therapy and a developmental model for human diseases, we had isolated three Chinese human embryonic stem cell lines from the inner cell mass of human blastocysts in 2002. All the three cell lines were grown on mouse embryonic fibroblasts as feeder cells; one of these cell lines, chHES-3, has maintained its normal karyotype even after being cultured in vitro for more than 100 passages, after the standardization of mouse feeder preparation. Each hES cell line has been completely characterized. All the three cell lines expressed hES-specific markers and pluripotency-related genes. These cells maintained their normal karyotype during long-term culture and displayed a high telomerase activity. When differentiated in vivo and in vitro, the derivatives representing the three germ layers could be observed. Human leukocyte antigen, ABO blood type, and DNA fingerprinting were also performed to provide a unique identity to each cell line. By establishing these hES cell lines, we provide an appropriate in vitro model to study human development and regeneration. All the three cell lines can be obtained for research purposes by placing a request at our website at www.hescbank.cn.  相似文献   

13.
The characterization of host cell protein (HCP) content during the production of therapeutic recombinant proteins is an important aspect in the drug development process. Despite this, key components of the HCP profile and how this changes with processing has not been fully investigated. Here we have investigated the supernatant HCP profile at different times throughout culture of a null and model GS-CHO monoclonal antibody producing mammalian cell line grown in fed-batch mode. Using 2D-PAGE and LC-MS/MS we identify a number of intracellular proteins (e.g., protein disulfide isomerise; elongation factor 2; calreticulin) that show a significant change in abundance relative to the general increase in HCP concentration observed with progression of culture. Those HCPs that showed a significant change in abundance across the culture above the general increase were dependent on the cell line examined. Further, our data suggests that the majority of HCPs in the supernatant of the cell lines investigated here arise through lysis or breakage of cells, associated with loss in viability, and are not present due to the secretion of protein material from within the cell. SELDI-TOF and principal components analysis were also investigated to enable rapid monitoring of changes in the HCP profile. SELDI-TOF analysis showed the same trends in the HCP profile as observed by 2D-PAGE analysis and highlighted biomarkers that could be used for process monitoring. These data further our understanding of the relationship between the HCP profile and cell viability and may ultimately enable a more directed development of purification strategies and the development of cell lines based upon their HCP profile.  相似文献   

14.
15.
The cleavage pattern of the black tiger shrimp Penaeus monodon was analyzed from the first division until gastrulation. Observations were based on microscopy combined with the use of fluorescent dyes, histological techniques, and computer based three-dimensional reconstructions. Early cleavage is holoblastic and follows a stereotypic pattern, which largely corresponds to what is known from other dendrobranchiate decapods. However, for the first time in this group, we report the presence of an intracellular structure throughout early development. This intracellular body (icb) marks the lineage of one of the two enlarged and division-delayed mesendoderm cells that initiate gastrulation. The identity of the icb as a natural marker and putative determinant of the germ line and its implications on the establishment of the body axes are discussed. The icb as a landmark reveals that the same stereotypic cell division pattern can lead to different fates of individual cells. Hence, the results of this study permit an additional approach to study the relation between cell lineage pattern and the identity of cell lineages.  相似文献   

16.
Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.  相似文献   

17.
Breast tumors are typically heterogeneous and contain diverse subpopulations of tumor cells with differing phenotypic properties. Planar cultures of cancer cell lines are not viable models of investigation of cell-cell and cell-matrix interactions during tumor development. This article presents an in vitro coculture-based 3-dimensional heterogeneous breast tumor model that can be used in drug resistance and drug delivery investigations. Breast cancer cell lines of different phenotypes (MDAMB231, MCF7, and ZR751) were cocultured in a rotating wall vessel bioreactor to form a large number of heterogeneous tumoroids in a single cell culture experiment. Cells in the rotating vessels were labeled with Cell Tracker fluorescent probes to allow for time course fluorescence microscopy to monitor cell aggregation. Histological sections of tumoroids were stained with hematoxylin and eosin, progesterone receptor, E-cadherin (E-cad), and proliferation marker ki67. In vitro tumoroids developed in this study recapture important features of the temporal-spatial organization of solid tumors, including the presence of necrotic areas at the center and higher levels of cell division at the tumor periphery. E-cad-positive MCF7 cells form larger tumoroids than E-cad-negative MDAMB231 cells. In heterogeneous tumors, the irregular surface roughness was mainly due to the presence of MDAMB231 cells, whereas MCF7 cells formed smooth surfaces. Moreover, when heterogeneous tumoroids were placed onto collagen gels, highly invasive MDAMB231 cell-rich surface regions produced extensions into the matrix, whereas poorly invasive MCF7 cells did not. The fact that one can form a large number of 1-mm tumoroids in 1 coculture attests to the potential use of this system at high-throughput investigations of cancer drug development and drug delivery into the tumor.  相似文献   

18.
19.
Development of new cancer treatments focuses increasingly on the relation of cancer tissue with its microenvironment. A major obstacle for the development of new anti-cancer therapies has been the lack of relevant animal models that would reproduce all the events involved in disease progression from the early-stage primary tumor until the development of mature metastatic tissue. To this end, we have developed a readily imageable mouse model of colorectal cancer featuring highly reproducible formation of spontaneous liver metastases derived from intrasplenic primary tumors. We optimized several experimental variables, and found that the correct choice of cell line and the genetic background, as well as the age of the recipient mice, were critical for establishing a useful model system. Among a panel of colorectal cancer cell lines tested, the epithelial carcinoma HT29 line was found to be the most suitable in terms of producing homogeneous tumor growth and metastases. In our hands, SCID mice at the age of 125 days or older were the most suitable in supporting consistent HT29 tumor growth after splenic implantation followed by reproducible metastasis to the liver. A magnetic resonance imaging (MRI) protocol was optimized for use with this mouse model, and demonstrated to be a powerful method for analyzing the antitumor effects of an experimental therapy. Specifically, we used this system to with success to verify by MRI monitoring the efficacy of an intrasplenically administered oncolytic adenovirus therapy in reducing visceral tumor load and development of liver metastases. In summary, we have developed a highly optimized mouse model for liver metastasis of colorectal cancer, which allows detection of the tumor load at the whole body level and enables an accurate timing of therapeutic interventions to target different stages of cancer progression and metastatic development.  相似文献   

20.
The mechanisms by which retinal ganglion cells (RGCs) make specific connections during development is an intense area of research and have served as a model for understanding the general principles of circuit wiring. As such, genetic tools allowing for specific recombination in RGCs are critical to further our understanding of the cell‐specific roles of different genes during these processes. However, many RGC‐specific Cre lines have drawbacks, due to their broad expression in other cell types and/or retinorecipient regions or lack of expression in broad swaths of the retina. Here, we characterize a Cre BAC transgenic line driven by elements of the cholinergic receptor nicotinic beta 3 subunit (Chrnb3). We show that Cre expression is restricted to RGCs in the retina and sparsely expressed in the brain, importantly excluding retinorecipient regions. Furthermore, Chrnb3‐Cre mice label a wide variety of RGCs distributed throughout the retina and Cre activity is detected embryonically, shortly following RGC differentiation. Finally, we find that Chrnb3‐Cre‐labeled RGCs innervate multiple retinorecipient areas that serve both image‐forming and nonimage forming functions. Thus, this genetic tool will be of broad use to investigators studying the RGC‐specific contributions of genes to visual circuit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号