首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New insights into the ultrastructure and phosphatase localizations of Golgi apparatus and GERL, and into the probable origin of lysosomes in the neurons of fetal dorsal root ganglia and the small neurons of adult ganglia have come from studying thick (0.5–1.0 µ) as well as thin (up to 500 A) sections by conventional electron microscopy. Tilting the thick specimens, by a goniometer stage, has helped to increase our understanding of the three-dimensional aspects of the Golgi apparatus and GERL. One Golgi element, situated at the inner aspect of the Golgi stack, displays thiamine pyrophosphatase and nucleoside diphosphatase activities. This element exhibits regular geometric arrays (hexagons) of interconnected tubules without evidence of a flattened portion (saccule or cisterna). In contrast, GERL shows acid phosphatase activity and possesses small cisternal portions and anastomosing tubules. Lysosomes appear to bud from GERL. Osmium deposits, following prolonged osmication, are found in the outer Golgi element. Serial 0.5-µ and thin sections of thiamine pyrophosphatase-incubated material demonstrate that, in the neurons studied, the Golgi apparatus is a continuous network coursing through the cytoplasm. Serial thick sections of acid phosphatase-incubated tissue suggest that GERL is also a continuous structure throughout the cytoplasm. Tubules of smooth endoplasmic reticulum, possibly part of GERL, extend into the polygonal compartments of the inner Golgi element. The possible physiological significance of a polygonal arrangement of a phosphatase-rich Golgi element in proximity to smooth ER is considered. A tentative diagram of the Golgi stack and associated endoplasmic reticulum in these neurons has been drawn.  相似文献   

2.
Belenky  Michael  Devor  Marshall 《Brain Cell Biology》1997,26(11):715-731
Functional coupling between sympathetic postganglionic neurons and sensory neurons is thought to play an essential role in the pathogenesis of certain chronic pain syndromes following peripheral tissue and nerve injury. The mechanism(s) underlying this interaction are enigmatic. The relative anatomical inaccessibility of sympathetic and sensory neurons in vivo complicates study of their interrelationships. We have developed a system for long-term co-culturing of explants of sympathetic chain ganglia and dorsal root ganglia from newborn rats. Co-cultures were labelled for tyrosine hydroxylase-like immunoreactivity and studied at the light and electron microscopic levels. Explanted ganglia of both types survived well in co-culture. They maintained their tissue type-specific histological properties, including neuronal and glial morphology, and characteristic glial–neuronal associations. Moreover, neurons maintained their characteristic neurochemical identity, at least to the extent that sympathetic neurons continued to express tyrosine hydroxylase and dorsal root ganglion neurons did not. Sympathetic neurons emitted numerous outgrowing processes (axons) some of which came into association with sensory neurons in the explanted dorsal root ganglia. Some apparently specific sympathetic-sensory contacts were observed, suggesting that a functional interaction may develop between sympathetic axons and sensory neurons in vitro.  相似文献   

3.
The distribution and ontogeny of four neuropeptides in developing chick lumbosacral sensory and sympathetic ganglia were studied using immunohistochemical techniques. Antibodies to two of these peptides, substance P (SP) and calcitonin gene-related peptide (CGRP), stained small neurons in the medial part of the dorsal root ganglia from embryonic Day 5 and Day 10, respectively, whereas neurons in the lateral part of the ganglia were negative; this distribution persisted throughout development. Both sets of neurons apparently send fibers to the dorsal horn of the spinal cord: SP to laminae I and II, and CGRP to lamina I, suggesting that the SP- and CGRP-positive sensory neurons are nociceptive or thermoreceptive. This correlation between the presence of SP or CGRP in a neuron and a particular functional modality thus provides evidence for a functional distinction between the mediodorsal and ventrolateral zones that are apparent during the development of chick dorsal root ganglia. Moreover, this study suggests that the type of neuron that develops within the dorsal root ganglion correlates with its position within the ganglion. In contrast to SP and CGRP, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) immunoreactivities were not seen in the lumbosacral sensory ganglia at any stage during development. However, both were present in sympathetic ganglia: SOM from embryonic Day 4.5 and VIP from embryonic Day 10. VIP immunoreactivity persisted throughout development in a large number of sympathetic neurons, but the number of cells with SOM immunoreactivity decreased from embryonic Day 10 onward. SOM therefore appears to be present only transiently in most chick lumbosacral sympathetic cells.  相似文献   

4.
Ultrastructural study of GERL in beige mouse alveolar macrophages   总被引:6,自引:4,他引:2       下载免费PDF全文
Alveolar macrophages of the beige mouse mutant have a system of smooth- surfaced elements with the hallmarks of GERL. GERL also appears to produce residual bodies, and both organelles show cytochemically demonstrable acid phosphatase activity. When cells are exposed to colloidal silver, the tracer is endocytosed via pinocytic vacuoles to GERL.  相似文献   

5.
A histochemical study of mucopolysaccharides in the dog spinal cord and dorsal root ganglia is reported in this paper. The histochemical techniques used were the following: PAS, colloidal iron, toluidine blue (pH 5.4 and 3.5), thionine (pH 5.4 and 3.5) and alcian blue 8GX (pH 1 and 2.5). Some histological stains were used also. Two types of neurons could be observed in spinal cord sections stained with colloidal iron techniques. In some neuron a border line of mucosubstances could be seen. In the dorsal root ganglia, different patterns of Nissl bodies distribution in neurons were described. This different distribution of Nissl bodies is associated with different metachromatic colorations of neurons. By using the colloidal iron method, two types of neurons were also revealed in the dorsal root ganglia: some neurons are of a yellow, small-sized and star-shaped type and others are of a light green, larger and round-shaped type. Mucosubstances in the endoneurium and perineurium of nerve fibers, in the Ranvier nodules and in the Schmidt-Lantermann incisures were observed. The possibility that the functional rhythm in some cases might be responsible for the difference in coloration between the dorsal root ganglia neurons is suggested.  相似文献   

6.
家兔脊神经节内肥大细胞与肽能神经关系的观察   总被引:2,自引:0,他引:2  
探讨脊神经节内肥大细胞与肽能神经的关系,采用常规组织学染色和免疫组织化学方法对家兔脊神经节内肥大细胞和P物质免疫阳性反应进行观察。结果显示:在P物质免疫反应阳性的神经元和神经纤维周围散在着肥大细胞,表明,脊神经节内,肥大细胞与肽能神经存在着组织形态学上的构筑关系。  相似文献   

7.
8.
Abstract: The accumulations by axoplasmic transport of selected enzyme activities proximal and distal to a ligature placed on the sciatic nerve were monitored in rats exposed in utero to maternal antibodies to nerve growth factor (NGF) and in control rats. Littermates of the animals exposed to anti-NGF were shown elsewhere to have had a 70% reduction in the number of sensory neurons in dorsal root ganglia and a 90% reduction in number of neurons in superior cervical (sympathetic) ganglion. The accumulation of F--sensitive acid phosphatase activity was depressed 75% both proximal and distal to the tie. Accumulation of F--resistant acid phosphatase activity was depressed nearly 50% proximal to the tie. Distal accumulation of this activity did not occur in either group of rats. Accumulation of acetylcholinesterase activity was not affected. Proximal accumulation of glutamic dehydrogenase activity was depressed 30%. Distal accumulation of the activities of β-glucuronidase and hexokinase was depressed 50%. In the lumbar dorsal root ganglia, dry weight was reduced 40%, and the activities of peroxide-sensitive, F--resistant acid phosphatase and of the mitochondrial enzymes hexokinase, glutamic dehydrogenase, glutamic-oxalacetic transaminase, and NAD-dependent isocitric dehydrogenase were all reduced a little more, 45–50% per ganglion. However, the activities of the lysosomal enzymes, F--sensitive acid phosphatase and β-glucuronidase, of the peroxide-resistant, F--resistant acid phosphatase, and of the mitochondrial enzyme glutaminase were all reduced about 60% per ganglion. The results of these measurements were interpreted to suggest that much, and perhaps all, of the F--sensitive acid phosphatase activity in motion in peripheral nerve in rat is confined to sensory axons.  相似文献   

9.
The distribution of nitric oxide synthase-immunoreactive (NOS-IR) axons and their relationship to structures immunoreactive to vasoactive intestinal polypeptide (VIP), substance P (SP) and tyrosine hydroxylase (TH) were studied by means of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) technique or double-labelling immunofluorescence in the genital organs of cow and pig. Relevant neurons were also investigated in the pig. NOS-containing neural structures were TH-immunonegative in bovine or porcine genital organs, or in the studied ganglia. In the bovine ovary, NOS-IR nerves were neither VIP-IR nor SP-IR, whereas in the pig, most NOS-containing axons were also VIP-IR. The oviduct was supplied by single NOS/VIP- or NOS/SP-containing nerves, whereas in the uterus, NOS-IR axons were moderate in number, often being immunoreactive for VIP or SP. Numerous NOS/VIP-IR and NOS/SP-IR nerves were found in the vagina of both species. In all tissues studied, NOS-IR axons were mainly related to vascular smooth muscle. Most of the neurons of the paracervical ganglia and some neurons in dorsal root ganglia exhibited strong NOS activity. Only single neurons in sympathetic ganglia were NADPH-d-positive. Most nitrergic neurons in the autonomic ganglia were VIP-IR but SP-immunonegative. The sensory neurons were mostly NOS/SP-IR, whereas only single neurons co-expressed NOS and VIP immunoreactivity.  相似文献   

10.
When a semisynthetic diet containing 1% orotic acid (OA) is fed to rats, the endoplasmic reticulum (ER) of hepatocytes vesiculates and lipoprotein (LP) droplets accumulate within the vesicles. When clofibrate (ethyl chlorophenoxyisobutyrate, CPIB) is added to the orotic acid-rich diet, the ER cisternae reform and the LP is mobilized through the reconstituted ER. A remarkable restoration of normal hepatocyte ultrastructure occurs except for a few organelles. From their morphological appearance it was suggested that cisternae which became dilated with small LP particles were part of GERL, abnormally enlarged. The present communication validates this interpretation through ultrastructural cytochemistry which can distinguish GERL from the adjacent Colgi apparatus. GERL shows acid phosphatase (AcPase) but not thiamine pyrophosphatase (TPPase) activity. In contrast, the adjacent Golgi element shows thiamine pyrophosphatase but not acid phosphatase activity. From such cytochemical studies we have recently proposed that GERL in normal rat hepatocytes may be involved in transforming LP particles, by enzymes like lipases that were presumed to be present in this hydrolase-rich portion of smooth ER. In the situation studied in this communication, the addition of ethyl chlorophenoxyisobutyrate to the diet causes the release from the ER of large amounts of LP to the Golgi apparatus and to GERL. Apparently the capacity of GERL to metabolize LP is exceeded and lipid accumulates in the residual bodies.  相似文献   

11.
Damage to the sciatic nerve produces significant changes in the relative synthesis rates of some proteins in dorsal root ganglia and in the amounts of some fast axonally transported proteins in both the sciatic nerve and dorsal roots. We have now analyzed protein synthesis and axonal transport after cutting the other branch of dorsal root ganglia neurons, the dorsal roots. Two to three weeks after cutting the dorsal roots, [35S]methionine was used to label proteins in the dorsal root ganglia in vitro. Proteins synthesized in the dorsal root ganglia and transported along the sciatic nerve were analyzed on two-dimensional gels. All of the proteins previously observed to change after sciatic nerve damage were included in this study. No significant changes in proteins synthesized in dorsal root ganglia or rapidly transported along the sciatic nerve were detected. Axon regrowth from cut dorsal roots was observed by light and electron microscopy. Either the response to dorsal root damage is too small to be detected by our methods or changes in protein synthesis and fast axonal transport are not necessary for axon regrowth. When such changes do occur they may still aid in regrowth or be necessary for later stages in regeneration.  相似文献   

12.
Neurite outgrowth from dorsal root (DRG) and sympathetic ganglia has been studied utilizing a simplified in vitro culture system for intact ganglia. Attachment of ganglia to tissue culture plates was achieved after a brief incubation of ganglia on the plates in the presence of 100% fetal calf serum or 5% ovalbumin in F12 medium. Neurite outgrowth from dorsal root and sympathetic ganglia was dependent on the continued presence of nerve growth factor (NGF) and on the NGF concentration. The NGF induced neurite outgrowth from DRG cultured in serum-free medium was delayed approximately 24 hr compared to the outgrowth in serum-containing medium.  相似文献   

13.
Transection of a peripheral nerve in neonatal rats induces death of the axotomized neurons which may be due to either necrosis or apoptosis. In the present investigation, neuronal cell death in L5 dorsal root ganglion was evaluated after unilateral sciatic nerve transection in rats at 1, 3, 5, 7 and 10 days age. After 5 days, right (experimental) and left (control) dorsal root ganglia in all groups were removed, fixed, processed and embedded for either light or electron microscopy. Normal nucleoli were counted in paraffin embedded serial sections, and correction factors for split and multiple nucleoli were applied as well as the physical disector. The number of neurons in the right dorsal root ganglia, as compared with the controls, was significantly lower in all groups, and the percentage of the reduction at 1, 3, 5, 7 and 10 days was 32.4, 27.2, 23.8, 22.8 and 21.8% respectively. On the other hand, the results of neuronal counts using the disector method showed 34.0, 25.7, 20.2, 20.0 and 14.2% reduction in the number of neurons at 1, 3, 5, 7 and 10 days, respectively. The microscopic and ultrastructural results indicated that there were typical morphological changes similar to those of apoptosis, including condensed basophilic nuclei, formation of nuclear caps, cell shrinkage and apoptotic body formation. We concluded that there is an increase in apoptosis in dorsal root ganglia following sciatic nerve axotomy with the greatest neuronal loss on postnatal day 1.  相似文献   

14.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

15.
The present electron microscopic cytochemical investigation was undertaken to characterize the alterations in the golgi apparatus and GERL of rat parotid acinar cells during ethionine intoxication and recovery. Although the Golgi apparatus and GERL were reduced in size, and some broadening of the Golgi saccules occurred as the result of ethionine treatment, the relative localization of thiamine pyrophosphatase (TPPase) activity in the Golgi saccules, and acid phosphatase activity (AcPase) in GERL, remained unchanged. Shortly after ethionine treatment was stopped, a dramatic redistribution of enzyme activities was noted. Within the first 24 hours of recovery, the Golgi apparatus began to enlarge, and the content of secretory granules increased. By day 3 of recovery, cisternae morphologically identifiable as GERL and forming secretory granules possessed TPPase activity, while AcPase activity was virtually undetectable. After seven days of recovery, the Golgi apparatus and GERL appeared both morphologically and cytochemically normal. The enzyme modulation observed during recovery may be correlated with increased secretory granule production. Furthermore, the presence of TPPase activity in GERL and forming secretory granules lends support to the suggestion that GERL may be derived from the trans Golgi saccule.  相似文献   

16.
Summary In rats, the distribution of nerve structures staining for NADPH-diaphorase, and showing immunoreactivities for nitric oxide synthase (NOS), tyrosine hydroxylase and various neuropeptides was studied in sensory ganglia (dorsal root, nodose and trigeminal ganglia), in sympathetic ganglia (superior cervical, stellate, coeliac-superior and inferior mesenteric ganglia), parasympathetic ganglia (sphenopalatine, submandibular, sublingual and otic ganglia), and in the mixed parasympathetic/ sympathetic ganglia (major pelvic ganglia). The coincidence of neuronal cell bodies with strong NOS-immunoreactivity and strong NADPH diaphorase reactivity was almost total. The relative proportions of NOS-immunoreactive nerve cell bodies were largest in parasympathetic ganglia and major pelvic ganglia followed by sensory ganglia. In sympathetic ganglia no NOS-immunoreactive neuronal cell bodies could be detected. In parasympathetic and major pelvic ganglia, there was a very significant neuronal co-localization of immunoreactivities for NOS and vasoactive intestinal polypeptide (VIP). This was almost total in major pelvic ganglia, in which NOS-/VIP-immunoreactive nerve cell bodies were separate from sympathetic (tyrosine hydroxylase-/neuropeptide Y-immunoreactive), suggesting that NOS-/VIP-immuno-reactive neurons might also be parasympathetic.  相似文献   

17.
In this study we examined the expression of P2X(3) receptor in mouse embryos from E9.5 to E14.5 using immunohistochemistry. We found a uniform labeling in the developing trigeminal and dorsal root ganglia (DRG), while adult DRG and trigeminal ganglia expressed P2X(3) only in small-diameter neurons. In the brainstem, the mesencephalic trigeminal and facial motor nuclei were immunoreactive for P2X(3). P2X(3) was also transiently expressed in the developing brain, and precursors of spinal motor neurons. We also detected immunolabeling in the paravertebral sympathetic chain ganglia, in the sympathoadrenal cells and in non-neural tissues including testis, epidermis, wall of the aorta, as well as in subepidermal structures and mesenchymal tissues of limbs, branchial arches and tail.  相似文献   

18.
19.
Phosphatase cytochemistry was used to distinguish between the Golgi apparatus and GERL (considered as a specialized region of endoplasmic reticulum [ER] at the inner [trans] aspect of the Golgi stack) in pancreatic exocrine cells of guinea pig, rat, rabbit, and hamster. The trans element of the Golgi stack exhibits thiamine pyrophosphatase (TPPase) but no acid phosphatase (AcPase) activity. In contrast, GERL shows AcPase but no TPPase activity. The nascent secretory granules, or condensing vacuoles, are expanded cisternal portions of GERL. Continuities of condensing vacuoles with rough ER are suggested, and it is proposed that some secretory components may have direct access to the condensing vacuoles from ER. Connections of Golgi apparatus with GERL were not seen.  相似文献   

20.
Synopsis Histochemical techniques were employed for the localization of choline acetyltransferase (ChAc; EC 2.3.1.6.), acetylcholinesterase (AChE; EC 3.1.1.7) and cholinesterase (ChE; EC 3.1.1.8) activities in dorsal and ventral roots and dorsal root ganglia of the bullfrog. AChE activity was present in most of the neuronal elements of dorsal root ganglia, in some nerve fibres in the dorsal roots, and in all nerve fibres in ventral roots. ChE activity in dorsal root ganglia and in the dorsal roots was confined to non-neuronal elements. No ChE activity was demonstrable in the ventral roots. ChAc activity was localized in many neurons of the dorsal root ganglia and in some nerve fibres of the dorsal roots; however, none of the ventral root fibres were visibly reactive. Some supportive cells of the dorsal roots and ganglia contained small amounts of ChAc activity. Except for the ventral roots, the histochemical distribution of AChE and ChAc activity was similar. The results of solubility studies indicated that under the histochemical conditions, approximately 50% of the ChAc remained bound to the dorsal roots and ganglia, whereas more than 90% of the ChAc in the ventral roots was soluble. This would account for the lack of reactivity in ventral root fibres. Differences in ChAc solubility are discussed in relation to the interpretation of histochemical data and in relation to the concept of multiple forms of ChAc. The results of this study indicate that at least one-third of the neurons of the dorsal root ganglia contain significant levels of the enzymes involved in both the synthesis and hydrolysis of acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号