首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish the location of the semidwarf gene, sd-1, the anthocyanin activator (A), purple node (Pn), purple auricle (Pau), and the isozyme locus, EstI-2, in relation to DNA markers on the molecular linkage map of rice, 20 RFLP markers, previously mapped to the central region of chromosome 1 (McCouch et al. 1988), were mapped onto an F2 population derived from the cross Taichung 65 (A,Pn,Pau)/Taichung 65 (sd-1). sd-1 and EstI-2 were determined to be linked most tightly to RFLP markers RG 109 and RG 220, which cosegregated with each other. The distance between these RFLP markers and sd-1 was estimated to be 0.8 cM, based on an observed recombination value of 0.8%. The order of genes and markers in this region of chromosome 1 was determined to be sd-1 — (EstI-2 — RG220 — RG109) — RG381 — APnPau. To test the efficacy of selection for sd-1 based on these linked markers, 50-day-old F2 seedlings derived from another cross, Milyang 23/Gihobyeo, were analyzed for marker genotype. At this age, the semidwarf character could not be clearly detected based on phenotype. In addition, plant height was normally distributed in this population, making it difficult to unambiguously identify plants carrying sd-1. Thirteen seedlings homozygous for the sd-1-associated allele at EstI-2, RG220 and RG109, and 13 seedlings homozygous for the Sd-1-associated allele at all three marker loci were selected for further genetic analysis. At 20 days after heading, the culm lengths of these 26 plants were measured and the expected phenotype was confirmed in every case. These 26 plants were then selfed for four generations and F6 lines were again evaluated to determine whether any recombination among the three molecular markers, or between these markers and the sd-1 gene, could be detected. No recombinants were identified, confirming the tight linkage of these loci and the usefulness of genotypic selection for this recessive semidwarf character prior to the time when it can be evaluated based on phenotype.  相似文献   

2.
The segregation pattern and chromosomal location of a slender glume mutation, induced by gamma-ray irradiation, was investigated. The mutation is genetically unstable: in the selfed progenies of slender glumed plants, not only plants with normal glumes but also plants that are chimeric for glume shape almost always appear at low frequency. The results showed that the mutation is controlled by a single recessive, mutable mutant gene slg. The frequency of reversion of slg to its wild-type state was little affected by crossing, backcrossing, genetic background or cytoplasmic factors. Conventional trisomic and linkage analyses revealed that the slg locus was located close to the rfs (rolled fine stripe leaf) locus on chromosome 7. In a subsequent RFLP analysis, slg was found to be located between the two RFLP loci XNpb20 and XNpb33, with recombination values of 3.0 and 3.2%, respectively. Southern analysis indicated that the mutability of slg is caused by none of the known transposable elements in rice. From these results, we infer that slg has a novel transposable DNA insert in its vicinity, which was possibly activated by gamma-ray irradiation. Received: 28 September 1998 / Accepted: 18 December 1998  相似文献   

3.
Summary The inheritance and biochemical basis of scent in rice was studied in the F2 population along with the F1 and its two parents, scented and non-scented Pokura rice strains. The F1 plants were found to be nonscented while the F2 plants seggregated into a 31 ratio (non-scented: scented). In scented F2 seggregants and in the scented parental strain, a fast moving esterase isozyme, Rf 0.9, is missing whereas it is present in all nonscented F2 seggregants, F1s, and in the non-scented parent. This suggests that the absence of a specific esterase isozyme is associated with the scent character in rice.  相似文献   

4.
Summary Eight hundred and thirtyone traditional varieties of rice, Oryza sativa L., were collected in Africa and analysed for their isozymic variability on 15 enzymatic systems, representing 37 presumed loci. There appears to be a correlation between the type of rice growing and the two groups Indica and Japonica. The degree of genetic diversity is nearly equal in African rice and the Asian one. Alleles due to introgression or mutational events were identified. The results suggest that the evolution of O. sativa is continuous in Africa by means of inter-subspecific or inter-specific crosses.  相似文献   

5.
The genomic DNA clone RG28, linked to the major fragrance gene of rice (fgr), was assessed for polymorphism in order to produce a PCR-based marker for fragrance. A small mono-nucleotide repeat, that was polymorphic between a pair of fragrant and non-fragrant cultivars, was identified and developed into a co-dominant PCR-based marker. The polymorphism-information-content determinations for three microsatellite markers, that have been genetically mapped near RG28, are also presented. These PCR-based markers will be highly useful in distinguishing fragrance-producing alleles from non-fragrance-producing alleles at the fgr locus. Received: 19 October 1999 / Accepted: 16 December 1999  相似文献   

6.
Genetic organization of isozyme variation in rice (Oryza sativa L.) was investigated based on 17 polymorphic isozyme loci using a sample of 511 accessions of worldwide origin. The genetic diversity within the species was very high (H=0.36 with 4.82 alleles per locus), as compared with most selfing plant species. Three diversity centers were detected for isozyme variation including South Asia, China and Southeast Asia. The accessions were classified into three well-differentiated cultivar groups corresponding to the indica and japonica subspecies, and a new unnamed group. Variation within the cultivar groups accounted for 80% of the total isozyme variation. Within-country variation accounted for 58% of the total variation while among-region and among-country variation within the cultivar groups accounted for only 14% and 8% of the total variation. Analyses using log-linear models revealed that pronounced non-random associations between and among alleles at many unlinked isozyme loci were organized in a non-hierarchical pattern, and subspecific and macro-geographic differentiation was much more pronounced in multilocus phenotype frequencies than in allelic frequencies at individual loci. These results suggest that selection on multilocus gene complexes was largely responsible for the maintenance of the extensive isozyme variation within the species and the indica-japonica differentiation. Our results further suggest the independent domestication of indica and japonica, the dual origins of the indica rice from China and South Asia (India), and the differentiation of the ecotypes ’javanica’ and the ’temperate japonica’ within the japonica subspecies. Received: 5 August 1999 / Accepted: 13 December 1999  相似文献   

7.
The thermo-sensititve genic male-sterile (TGMS) gene in rice can alter fertility in response to temperature and is useful in the two-line system of hybrid rice production. However, little is known about the TGMS gene at the molecular level. The objective of this study was to identify molecular markers tightly linked with the TGMS gene and to map the gene onto a specific rice chromosome. Bulked segregant analysis of an F2 population from 5460s (a TGMS mutant line) x Hong Wan 52 was used to identify RAPD markers linked to the rice TGMS gene. Four hundred RAPD primers were screened for polymorphisms between the parents and between two bulks representing fertile and sterile plants; of these, 4 primers produced polymorphic products. Most of the polymorphic fragments contained repetitive sequences. Only one singlecopy sequence fragment was found, a 1.2-kb fragment amplified by primer OPB-19 and subsequently named TGMS1.2. TGMS1.2 was mapped on chromosome 8 with a RIL population and confirmed by remapping with a DHL population. Segregation analysis using TGMS1.2 as a probe indicated that TGMS1.2 both consegregated and was lined with the TGMS gene in this population. It is located about 6.7 cM from the TGMS gene. As TGMS1.2 is linked to the TGMS gene, the TGMS gene must be located on chromosome 8.This research was supported by the Rockefeller Foundation and China National High-Tech Research and Development Program. The first author is a Rockefeller Career Fellow at Texas Tech University  相似文献   

8.
水稻半矮秆基因sd-g的染色体定位研究   总被引:10,自引:0,他引:10  
以标志基因系和IR36三体为工具材料,通过杂交,研究了籼稻矮秆材料双矮所携半矮秆基因sd-g在染色体上的位置。结果表明:半矮秆基因sd-g与标志基因系M4所携隐性主基因gh-1和M27所携隐性主基因n1表现连锁。sd-g与gh-1之间的交换值为24.33%±3.96%,sd-g与n1之间的交换值为29.44%±4.81%。由于gh-1和n1均位于第5染色体,因而推定sd-g位于第5染色体上。  相似文献   

9.
10.
Genetic analysis established that Aitaiyin3,a dwarf rice variety derived from a semidwarf cultivar Taiyin1,carries two recessive semidwarf genes.By using simple sequence repeat(SSR)markers,we mapped the two semidwarf genes,sd-1 and sd-t2 on chromosomes 1 and 4,respectively.Sd-t2 was thus named because the semidrawf gene sd-t has already been identified from Aitaiyin 2 whose origin could be traced back to Taivin1.The result of the molecular mappingof sd-1 gene revealed it is linked to four SSR markers found on chromosome 1.These markers are:RM297,RM302,RM212,and OSR3 spaced at 4.7 cM,0 cM,0.8cM and 0 cM,respectively.Sd-t2 was found to be located on chromosome 4 using five SSR markers:two markers,SSR332 and RM1305 located proximal to sd-t2 are spaced 11.6 cM,3.8 cM,respectively,while the three distally located primers,RM5633,RM307,and RM401 are separated by distances of 0.4 cM,0.0 cM,and 0.4 cM,respectively.  相似文献   

11.
Magnaporthe grisea causes rice blast, the most important fungal disease of rice. The segregation of genes controlling virulence of M. grisea on rice was studied to establish the genetic basis of cultivar specificity in this host-parasite interaction. Full-sib progeny and parent isolates Guy11 and 2539 of M. grisea were inoculated onto rice (Oryza sativa) cultivar CO39 and five near-isogenic lines (NILs) of CO39. Each NIL contained a different single gene affecting resistance to specific isolates of M. grisea. No differential interactions between NILs and progeny or parents were observed; parents and progeny pathogenic on CO39 were pathogenic on all five NILs. Segregation ratios of 101 full-sib progeny, 117 progeny from full-sib parents, and 109 backcross progeny, indicated a common single gene affecting pathogenicity on CO39 and the five NILs. A subset of the above 327 isolates (43 fullsib progeny, 37 progeny from full-sib parents, and 32 backcross progeny) were inoculated onto rice cultivar 51583; all were pathogenic, indicating that cultivar specificity to CO39 was segregating in this population of isolates. The locus controlling cultivar specificity, named avrCO39, was mapped to chromosome 1 using a subset of the progeny previously used to construct an RFLP map of M. grisea. The closest reported RFLP markers were 11.8 (estimated 260 kb) and 17.2 cM (estimated 380 kb) away and provide starting points on either side of the locus for a chromosome walk to clone the locus.  相似文献   

12.
To understand the development of rice leaf blades,we identified a new rolled-leaf mutant,w32,from indica cultivar IR64 through EMS mutagenesis. The mutant showed a stable rolled-leaf phenotype throughout the life cycle. Two F2 populations were developed by crossing w32 to cultivar IR24 and PA64. Genetic analysis showed that the rolled-leaf phenotype was controlled by a single recessive gene. To determine the location of the gene,bulked segregant analysis was carried out using mutant and wild-type DNA pools ...  相似文献   

13.
A mutable slender glume gene slg, which often reverts to the wild-type state, was induced by gamma-ray irradiation of seeds of the japonica rice cultivar 'Gimbozu'. The final goal was to understand whether the slender glume mutation was associated with the insertion of a transposable element, utilizing map-based cloning techniques. The RFLP (restriction fragment length polymorphism) analysis revealed that the slg locus was located between two RFLP loci, XNpb33 and R1440, on chromosome 7 with recombination values of 3.1% and 1.0%, respectively. Using these two RFLP loci as probes, five YAC (yeast artificial chromosome) clones containing either of these two loci were selected from a YAC library. Subsequently, both end fragments of these YAC clones, amplified by the inverse PCR (IPCR) method, were used to select new YAC clones more closely located to the slg locus. After repeating such a procedure, we successfully constructed a 6-cM YAC contig, and identified four overlapping YAC clones, Y1774, Y3356, Y5124, and Y5762, covering the slg locus. The chromosomal location of the slg was narrowed down to the region with a physical distance of less than 280 kb between the right-end fragments of Y1774 and Y3356.  相似文献   

14.
The waxy gene, which encodes the granule bound starch synthase enzyme, is one of the key genes influencing starch synthesis in the rice endosperm. To investigate functional differences between GBSS alleles, we cloned and sequenced GBSS cDNA from a series of cultivars that differed substantially in apparent amylose content and starch viscosity characteristics. We found two single nucleotide polymorphisms in exons 6 and 10 that resulted in amino acid substitutions. These substitutions are associated with differences in apparent amylose content and viscosity characteristics. Subsequent sequencing of these regions from additional cultivars confirmed their association with particular rice quality characteristics. These point mutations could prove useful as molecular markers in the production of cultivars with superior eating, cooking and processing quality, and contribute to our understanding of the various structural and functional differences among granule bound starch synthase alleles.  相似文献   

15.
Molybdenum cofactor (Moco) is essential for nitrate reductase (NR), xanthine dehydrogenase (XDH), and aldehyde oxidase to perform their catalytic functions in plants. Moco biosynthesis is a complex process involving many genes. Little is known about the genetics and molecular aspects of Moco biosynthesis in plants and other eukaryotes. In rice, we previously isolated a Moco mutant C25 with a mutation in the CNX2 gene from a mutagenized indica cultivar IR30 and characterized its biochemical properties. This mutant was crossed with a japonica cultivar, Norin 8, to investigate the linkage of cnx2 to restriction fragment length polymorphism (RFLP) and cleaved amplified polymorphic sequence (CAPS) markers. Chlorate resistance was used to trace the cnx2 mutation because of its cosegregation with the loss of NR and XDH activities observed earlier. RFLP and CAPS analyses show the location of the cnx2 locus on the long arm of chromosome 4. It is mapped between RFLP markers C513 and C377 with a distance of 9.5 and 13.1 cM, respectively. It is also linked with CAPS marker RA0738 at a distance of 30.3 cM. Received: 25 June 2000 / Accepted: 31 August 2000  相似文献   

16.
Summary Some of results from morphological and cytological observations and esterase-isozyme studies of a rice-sorghum hybrid are presented in this paper. There is a great diversity of morphological characters and some special characteristics in the progenies of the hybrids of rice with sorghum. The meiosis of pollen mother cells in the early generations of the hybrid was found to be abnormal. One main band coinciding with one found in sorghum but lacking in rice appeared in the majority of the hybrid lines. This band is characteristic of a are the specificities of the distant hybridization of rice and sorghum, and is rarely observed in the intervariety hybrids or hybrids between subspecies of Oryza sativa, indica and japonica. On the basis of these facts we concluded that the hybrids obtained are true hybrids of rice and sorghum.  相似文献   

17.
Characterization of the rice (Oryza sativa) actin gene family   总被引:11,自引:0,他引:11  
  相似文献   

18.
Summary A short, highly repeated, interspersed DNA sequence from rice was characterized using a combination of techniques and genetically mapped to rice chromosomes by restriction fragment length polymorphism (RFLP) analysis. A consensus sequence (GGC)n, where n varies from 13–16, for the repeated sequence family was deduced from sequence analysis. Southern blot analysis, restriction mapping of repeat element-containing genomic clones, and DNA sequence analysis indicated that the repeated sequence is interspersed in the rice genome, and is heterogeneous and divergent. About 200000 copies are present in the rice genome. Single copy sequences flanking the repeat element were used as RFLP markers to map individual repeat elements. Eleven such repeat elements were mapped to seven different chromosomes. The strategy for characterization of highly dispersed repeated DNA and its uses in genetic mapping, DNA fingerprinting, and evolutionary studies are discussed.  相似文献   

19.
20.
The syncytial endosperm of rice undergoes cellularization according to a regular morphogenetic plan. At 3 days after pollination (dap) mitosis in the peripheral synctium ceases. Radial systems of microtubules emanating from interphase nuclei define nuclear-cytoplasmic domains (NCDs) which develop axes perpendicular, to the embryo sac wall. Free-growing anticlinal walls between adjacent NCDs compart-mentalize the cytoplasm into open-ended alveoli which are overtopped by syncytial cytoplasm adjacent to the central vacuole. At 4 dap, mitosis resumes as a wave originating adjacent to the vascular bundle. The spindles are oriented parallel to the alveolar walls and cell plates formed in association with interzonal phragmoplasts result in periclinal walls that cut off a peripheral layer of cells and an inner layer of alveoli displaced toward the center. Polarized growth of the newly formed alveoli and elongation of the anticlinal walls occurs during interphase. The next wave of cell division in the alveoli proceeds as the first and a second cylinder of cells is cut off inside the peripheral layer. The periods of polarized growth/anticlinal wall elongation alternating with periclinal cell division are repeated 3–4 times until the grain is filled by 5 dap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号