首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.  相似文献   

2.
Unrepaired DNA double-strand breaks (DSBs) produced by ionizing radiation (IR) are a major determinant of cell killing. To determine the contribution of DNA repair pathways to the well-established cell cycle variation in IR sensitivity, we compared the radiosensitivity of wild-type CHO cells to mutant lines defective in nonhomologous end joining (NHEJ), homologous recombination repair (HRR), and the Fanconi anemia pathway. Cells were irradiated with IR doses that killed approximately 90% of each asynchronous population, separated into synchronous fractions by centrifugal elutriation, and assayed for survival (colony formation). Wild-type cells had lowest resistance in early G1 and highest resistance in S phase, followed by declining resistance as cells move into G2/M. In contrast, HR-defective cells (xrcc3 mutation) were most resistant in early G1 and became progressively less resistant in S and G2/M, indicating that the S-phase resistance in wild-type cells requires HRR. Cells defective in NHEJ (dna-pk(cs) mutation) were exquisitely sensitive in early G1, most resistant in S phase, and then somewhat less resistant in G2/M. Fancg mutant cells had almost normal IR sensitivity and normal cell cycle dependence, suggesting that Fancg contributes modestly to survival and in a manner that is independent of cell cycle position.  相似文献   

3.
Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the response of mycobacteria to mitomycin C preferentially involved a RecA-dependent pathway.  相似文献   

4.
Li Z  Wen J  Lin Y  Wang S  Xue P  Zhang Z  Zhou Y  Wang X  Sui L  Bi LJ  Zhang XE 《PloS one》2011,6(5):e20045
In eukaryotic cells, repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway is critical for genome stability. In contrast to the complex eukaryotic repair system, bacterial NHEJ apparatus consists of only two proteins, Ku and a multifunctional DNA ligase (LigD), whose functional mechanism has not been fully clarified. We show here for the first time that Sir2 is involved in the mycobacterial NHEJ repair pathway. Here, using tandem affinity purification (TAP) screening, we have identified an NAD-dependent deacetylase in mycobacteria which is a homologue of the eukaryotic Sir2 protein and interacts directly with Ku. Results from an in vitro glutathione S-transferase (GST) pull-down assay suggest that Sir2 interacts directly with LigD. Plasmid-based end-joining assays revealed that the efficiency of DSB repair in a sir2 deletion mutant was reduced 2-fold. Moreover, the Δsir2 strain was about 10-fold more sensitive to ionizing radiation (IR) in the stationary phase than the wild-type. Our results suggest that Sir2 may function closely together with Ku and LigD in the nonhomologous end-joining pathway in mycobacteria.  相似文献   

5.
KU70 (XRCC6 gene in humans) is one of the proteins in the KU70-KU80 heterodimer which is the first component recruited to broken DNA ends during DNA double-strand break repair through nonhomologous end joining (NHEJ). Previous studies have shown that Ku70 deficient mouse cells are defective in NHEJ and V(D)J recombination. In contrast, heterozygous KU70 mutant human cell lines did not show any significant change in cell viability and sensitivity towards ionizing radiation. In this study, we used CRISPR-Cas9 technique to generate a KU70 mutant (heterozygous) human pre-B leukemic cell line (N6-KU70–2-DG). We observed that the N6-KU70–2-DG cells showed a prominent reduction in the expression of both KU70 mRNA and protein. The mutant cells showed reduced cell viability, increased sensitivity to DSB inducing agents such as ionizing radiation (IR) and etoposide, and increased number of unrepaired DSBs after exposure to IR. In addition, the mutant cells showed a reduction in the NHEJ activity and increased rate of microhomology mediated joining (MMEJ) activity. KU70 mutant cells also revealed enhanced level of senescence markers following irradiation. Thus, we report a novel KU70-mutant leukemic cell line (heterozygous) with reduced NHEJ, which is sensitive to DNA damaging agents, unlike the previously reported other KU heterozygous mutant cell lines.  相似文献   

6.
The role of DNA repair by nonhomologous-end joining (NHEJ) in spore resistance to UV, ionizing radiation, and ultrahigh vacuum was studied in wild-type and DNA repair mutants (recA, splB, ykoU, ykoV, and ykoU ykoV mutants) of Bacillus subtilis. NHEJ-defective spores with mutations in ykoU, ykoV, and ykoU ykoV were significantly more sensitive to UV, ionizing radiation, and ultrahigh vacuum than wild-type spores, indicating that NHEJ provides an important pathway during spore germination for repair of DNA double-strand breaks.  相似文献   

7.
Non-homologous end-joining (NHEJ) and homologous recombination repair (HRR), contribute to repair ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Mre11 binding to DNA is the first step for activating HRR and Ku binding to DNA is the first step for initiating NHEJ. High-linear energy transfer (LET) IR (such as high energy charged particles) killing more cells at the same dose as compared with low-LET IR (such as X or γ rays) is due to inefficient NHEJ. However, these phenomena have not been demonstrated at the animal level and the mechanism by which high-LET IR does not affect the efficiency of HRR remains unclear. In this study, we showed that although wild-type and HRR-deficient mice or DT40 cells are more sensitive to high-LET IR than to low-LET IR, NHEJ deficient mice or DT40 cells are equally sensitive to high- and low-LET IR. We also showed that Mre11 and Ku respond differently to shorter DNA fragments in vitro and to the DNA from high-LET irradiated cells in vivo. These findings provide strong evidence that the different DNA DSB binding properties of Mre11 and Ku determine the different efficiencies of HRR and NHEJ to repair high-LET radiation induced DSBs.  相似文献   

8.
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme which reduces oxidized methionine to methionine. Since oxidation of methionine in proteins impairs their function, an absence of MsrA leads to abnormalities in different organisms, including alterations in the adherence patterns and in vivo survival of certain pathogenic bacteria. To understand the role of MsrA in intracellular survival of bacteria, we disrupted the gene encoding MsrA in Mycobacterium smegmatis through homologous recombination. The msrA mutant strain of M. smegmatis exhibited significantly reduced intracellular survival in murine J774A.1 macrophages compared to the survival of its wild-type counterpart. Furthermore, immunofluorescence and immunoblotting of phagosomes containing M. smegmatis strains revealed that the phagosomes with the msrA mutant strain acquired both p67(phox) of phagocyte NADPH oxidase and inducible nitric oxide synthase much earlier than the phagosomes with the wild-type strain. In addition, the msrA mutant strain of M. smegmatis was observed to be more sensitive to hydroperoxides than the wild-type strain was in vitro. These results suggest that MsrA plays an important role in both extracellular and intracellular survival of M. smegmatis.  相似文献   

9.
We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the alpha-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 10(4)-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.  相似文献   

10.
Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways.  相似文献   

11.
The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP''s binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation.  相似文献   

12.
Three wild-type diploid yeast strains Saccharomyces ellipsoideus and Saccharomyces cerevisiae and five radiosensitive mutants of S. cerevisiae in the diploid state were irradiated with gamma-rays from 60Co and alpha-particles from 239Pu in the stationary phase of growth. Survival curves and the kinetics of the liquid holding recovery were measured. It was shown that the irreversible component was enhanced for the densely ionizing radiation in comparison to the low-LET radiation while the probability of the recovery was identical for both the low- and high-LET radiations for all the strains investigated. It means that the recovery process itself is not damaged after densely ionizing radiation and the enhanced RBE of the high-LET radiation may be caused by the increased yield of the irreversible damage. A parent diploid strain and all its radiosensitive mutants showed the same probability for recovery from radiation damage. Thus, the mechanism of the enhanced radiosensitivity of the mutant cells might not be related to the damage of the repair systems themselves but with the production of some kind of radiation damage from which cells are incapable to recover.  相似文献   

13.
Exposure to genotoxic agents, such as ionizing radiation (IR), produces double-strand breaks, repaired predominantly in mammalian cells by non-homologous end-joining (NHEJ). Ku70 was identified as an interacting partner of a proteolytic Cyclin E (CycE) fragment, p18CycE. p18CycE endogenous generation during IR-induced apoptosis in leukemic cells and its stable expression in epithelial tumor cells sensitized to IR. γH2AX IR-induced foci (IRIFs) and comet assays indicated ineffective NHEJ DNA repair in p18CycE-expressing cells. DNA pull-down and chromatin recruitment assays revealed that retention of NHEJ factors to double-strand breaks, but not recruitment, was diminished. Similarly, IRIFs of phosphorylated T2609 and S2056-DNA-PKcs and its target S1778-53BP1 were greatly decreased in p18CycE-expressing cells. As a result, DNA-PKcs chromatin association was also increased. 53BP1 IRIFs were suppressed when p18CycE was generated in leukemic cells and in epithelial cells stably expressing p18CycE. Ataxia telangiectasia mutated was activated but not its 53BP1 and MDC1 targets. These data indicate a profound influence of p18CycE on NHEJ through its interference with DNA-PKcs conformation and/or dimerization, which is required for effective DNA repair, making the p18CycE-expressing cells more IR sensitive. These studies provide unique mechanistic insights into NHEJ misregulation in human tumor cells, in which defects in NHEJ core components are rare.  相似文献   

14.
《Fungal biology》2014,118(9-10):846-854
Inactivating the non-homologous end joining (NHEJ) pathway is a well established method to increase gene replacement frequency (GRF) in filamentous fungi because NHEJ is predominant for the repair of DNA double strand breaks (DSBs), while gene targeting is based on homologous recombination (HR). DNA ligase IV, a component of the NHEJ system, is strictly required for the NHEJ in Saccharomyces cerevisiae and Neurospora crassa. To enhance the GRF in Monascus ruber M7, we deleted the Mrlig4 gene encoding a homolog of N. crassa DNA ligase IV. The obtained mutant (MrΔlig4) showed no apparent defects in vegetative growth, colony phenotype, microscopic morphology, spore yield, and production of Monascus pigments and citrinin compared with the wild-type strain (M. ruber M7). Gene targeting of ku70 and triA genes revealed that GRF in the MrΔlig4 strain increased four-fold compared with that in the wild-type strain, reached 68 % and 85 %, respectively. Thus, the MrΔlig4 strain is a promising host for efficient genetic manipulation. In addition, the MrΔlig4 strain is more sensitive than M. ruber M7 to a DNA-damaging agent, methyl methanesulfonate.  相似文献   

15.
Ku-dependent nonhomologous end joining (NHEJ) is a double-strand break repair process conserved in all branches of cellular life but has not previously been implicated in the DNA metabolic processes of viruses. We identified Ku homologs in Corndog and Omega, two related mycobacteriophages of Mycobacterium smegmatis. These proteins formed homodimers and bound DNA ends in a manner identical to other Ku's and stimulated joining of ends by the host NHEJ DNA ligase (LigD). Omega and Corndog are unusual in having short 4 base cos ends that would not be expected to self-anneal and would therefore require NHEJ during phage genome circularization. Consistently, M. smegmatis LigD null strains are entirely and selectively unable to support infection by Corndog or Omega, with concomitant failure of genome circularization. These results establish a new paradigm for sequestration of the host cell NHEJ process by bacteriophage and provide a framework for understanding similar transactions in eukaryotic viral infections.  相似文献   

16.
The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via α/β-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and α/β-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the α/β-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.  相似文献   

17.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

18.
Summary Four genes concerned with the resistance of wild-type Micrococcus radiodurans to the lethal action of mitomycin-C (MTC), mtcA, mtcB, uvsA and uvsB, have been identified by isolating mutants sensitive to MTC.Two strains of M. radiodurans, 302 and 262 carrying mutations in mtcA and mtcB respectively, are between forty and sixty times as sensitive as the wild-type to MTC, only slightly more sensitive than the wild-type to ionizing () radiation and have the same resistance as the wild-type to ultraviolet (u.v.) radiation. Strain 302 can be transformed at a high frequency to wild-type resistance to MTC with DNA from strain 262, and vice versa, indicating that mtcA and mtcB have different genetic locations.Two further strains of M. radiodurans, 303 and 263 having mutations in uvsA and uvsB respectively are only from four to eight times as sensitive as the wild-type to MTC, seven to thirteen times as sensitive to -radiation but between twenty to thirty-three times as sensitive to u.v. radiation. Strain 303 can be transformed with DNA from strain 263, or vice versa, to wild-type resistance to u.v. radiation, implying that uvsA and uvsB also have different genetic locations. M. radiodurans strain 301 which is mutant in both mtcA and uvsA, and strain 261 which is mutant in mtcB and uvsB are twenty to forty times as sensitive as the wild-type to both MTC and u.v. radiation and seven to ten times as sensitive to radiation. Neither mtcA and uvsA nor mtcB and uvsB are closely linked.None of the mutant strains is deficient in recombination, as measured by transformation. The repair of MTC-induced DNA damage in M. radiodurans must be different from that described for Escherichia coli.  相似文献   

19.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

20.
The ergot fungus Claviceps purpurea uses mainly the nonhomologous-end-joining (NHEJ) system for integration of exogenous DNA, leading to a low frequency of homologous integration (1-2%). To improve gene targeting efficiency we deleted the C. purpurea ku70 gene in two different strains: the pathogenic strain 20.1 and the apathogenic, ergot alkaloid producing strain P1. The mutants were not impaired in vegetative and pathogenic development nor alkaloid production. Gene targeting efficiency was significantly increased (50-60%) in the Deltaku70 mutants. The P1 Deltaku70 strain (producing ergotamine and ergocryptine) was used for targeted deletion of lpsA1, one of the two trimodular NRPS genes present in the alkaloid gene cluster, encoding D-lysergyl peptide synthetases involved in formation of the tripeptide moiety of ergopeptines. Mutants lacking the lpsA1 gene were shown to be incapable of producing ergotamine but were still able to produce ergocryptine, proving that LpsA1 is involved in ergotamine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号