首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transtrophectodermal 3-0-methyl glucose (3-0MG) transport in the rabbit blastocyst at Days 6 and 7 post coitum was investigated to understand better how the trophectoderm can regulate inner cell mass growth by controlling substrate availability. 3-0MG rapidly traversed the trophectoderm and displayed saturation kinetics (Km = 4.3 +/- 0.5 mM, Vmax = 79 +/- 3.8 nmol.cm-2). The flux of 3-0MG was inhibited nearly 95% by 10(-4) M-phloretin, and only 15% by 10(-4) M-phlorizin. Furthermore, 3-0MG influx was inhibited by cytochalasin B (5 microM) and was unaffected by removal of sodium. The transport system had a high specificity for 2-deoxy-D-glucose and glucose, and a very low specificity for fructose and 4-alpha-methyl glucoside. Western blots probed with a polyclonal antibody to the human erythrocyte glucose transport protein and also with a polyclonal antibody to the C-terminus of the glucose transport protein of the rat brain revealed a broad band with a molecular weight of 55,000. Using immuno-gold labelling techniques, Na(+)-independent glucose transporters were localized to both the apical and basolateral borders of the trophectodermal cell. These results suggest that the mechanism in the trophectoderm responsible for transport of glucose is similar to other sodium-independent glucose transport systems. In addition, 3-0MG influx was unaffected by short-term incubation with progesterone, the progesterone antagonist mifepristone (RU-486), PGF-2 alpha, PGE-2, insulin, or cAMP. Day-7 p.c. embryos also transported hexoses by a similar system because the influx rate and the phlorizin/phloretin sensitivity were the same as in the Day-6 p.c. embryo.  相似文献   

2.
Although toxic for early stages of embryo development, glucose is a physiological metabolic substrate at the morula and blastocyst stages. We evaluated the effect of adding 5.5 mM glucose from the morula stage on bovine blastocyst development and quality. In vitro matured and fertilised bovine oocytes were cultured in modified Synthetic Oviduct Fluid medium containing 5% fetal calf serum, but without added glucose, up to day 5 post-insemination (pi). Morulae were selected and further cultured in the presence or absence of 5.5 mM glucose. Blastocyst and hatched blastocyst rates were recorded. Oxygen, glucose and pyruvate uptakes as well as lactate release were evaluated. The quality of the resulting blastocysts was evaluated by the cell allocation to the inner cell mass (ICM) and trophectoderm (TE) and by the apoptotic index. Adding glucose increased the blastocyst rate at day 8 pi (80% vs 65%) but had no impact on hatching rate (25% vs 28%). A 22% decrease in oxygen uptake was observed in the presence of glucose, concomitant with an increase in lactate release, although no change was observed in pyruvate uptake. A slight decrease in blastocyst cell number was observed at day 7 in the presence of glucose while neither the ICM/TE cell ratio nor the apoptotic index were affected. In conclusion, adding 5.5 mM glucose from the morula stage has a limited impact on blastocyst rate and quality although important modifications were observed in embryo metabolism. It remains to be determined whether those modifications could influence embryo viability after transfer.  相似文献   

3.
We microinjected horseradish peroxidase and rhodamine-conjugated dextran into single inner cell mass (ICM) cells of preimplantation mouse embryos to study their fate in culture. Simultaneous iontophoresis of both lineage markers allowed immediate localization of the injected cell by epifluorescence, followed by microdrop culture of individual embryos. After 24 hr in culture, labeled descendants were found in the polar trophectoderm, ICM, and parietal endoderm, providing direct evidence that the ICM contributes descendants to the trophectoderm and the endoderm in the intact mouse embryo. Our results substantiate the totipotency of the ICM during the expanding blastocyst stage and further demonstrate that the ICM is a stem cell population from which cells are recruited into these tissue lineages during growth of the blastocyst.  相似文献   

4.
The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/- 8.1 cells, which increased to 84.4 +/- 5.7 and 125.5 +/- 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/- 6.0 and 40.3 +/- 5.0, respectively) and then doubled on day 7 (80.6 +/- 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/- 4.0 and 41.9 +/- 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/- 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.  相似文献   

5.
Mammalian pre-implantation development culminates in the formation of the blastocyst consisting of two distinct cell lineages, approximately a third of the cells comprise the pluripotent inner cell mass (ICM) and the remainder the differentiated trophectoderm (TE). However, the contribution made by these two cell types to the overall energy metabolism of the intact blastocyst has received relatively little attention. In this study, the metabolism of the intact mouse blastocyst and isolated ICMs were determined in terms of total ATP formation (calculated from oxygen consumption and lactate formation), mitochondrial distribution and amino acid turnover to provide an indication of protein synthesis. The TE consumed significantly more oxygen, produced more ATP and contained a greater number of mitochondria than the ICM. Amino acid turnover was significantly greater (p<0.001) in the TE compared with the ICM. Specifically, there was a significant difference in the utilization of aspartate (p=0.020), glutamate (p=0.024), methionine (p=0.037), and serine (p=0.041) between the cells of the ICM and TE. These data suggest that the TE produces approximately 80% of the ATP generated and is responsible for 90% of amino acid turnover compared with the ICM. The major fate of the energy produced by the TE is likely to be the Na(+), K(+)ATPase (sodium pump enzyme) located on the TE basolateral membrane. In conclusion, the pluripotent cells of the ICM display a relatively quiescent metabolism in comparison with that of the TE.  相似文献   

6.
Employing a total of 3465 bovine oocytes this study was aimed at improving the efficiency of bovine embryo production under defined and undefined conditions. Following in vitro maturation (IVM) and in vitro fertilization (IVF), oocytes were allocated to various culture treatments using synthetic oviduct fluid (SOF). In our 3 experiments we showed that: 1) the addition of fetal calf serum (FCS 10% v/v) to SOF droplets after 20 to 24 h significantly improved blastocyst yields on Day 6 (21 vs 12%; P < 0.01), but not at later stages and resulted in significantly higher Day-8 blastocyst cell numbers (148 +/- 61 vs 92 +/- 35; P < 0.05); 2) the removal of bovine serum albumin (BSA) from the standard SOF medium resulted in significantly reduced blastocyst yields on Days 6, 7 and 8, respectively (17 vs 8%; 28 vs 18%; 31 vs 21%; P < 0.05); 3) the presence or absence of cumulus cells surrounding the presumptive zygote in culture in SOF had no effect on cleavage rate, percentage of 5-8 cell embryos or blastocyst yields (Day 6,7 or 8); 4) the culture of presumptive zygotes in SOF in an atmosphere of 5% CO2 in air (20% O2) resulted in significantly reduced development compared with culture in 5% CO2, 5% O2, 90% N2 in terms of blastocyst yield on Days 6, 7 and 8 and on Day 8 hatching rate, respectively (5 vs 22%; 9 vs 33%; 13 vs 48%; 50 vs 8%; P < 0.001) and 5) embryo density (1 embryo per 1 or 3 microl SOF) or replacing the culture medium every 48 h had no effect when SOF was supplemented with serum; however, under serum-free conditions, changing of the media resulted in a slightly improved Day-6 blastocyst yield such that renewal of serum-free medium mimicked the effect of serum addition.  相似文献   

7.
Embryos derived from calf oocytes were compared with adult cow oocyte-derived embryos (1) by studying the kinetics of embryo development using time-lapse cinematography (2) by evaluating the ratio between inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts (3) by measuring the triglyceride content of the blastocysts. The rate of calf oocyte-derived embryos reaching the blastocyst stage was reduced (26 vs. 46% for adult derived embryos). Calf oocyte-derived embryos preferably arrested their development before the 9-cell stage. Those that developed into blastocysts had cleaved earlier to reach the 2-cell or 3-cell stages than embryos that arrested before the 9-cell stage. The 9-cell stage tended to appear later in calf oocyte-derived embryo that reached the blastocyst stage than in adult-derived embryos. This difference became significant at the morula stage. Accordingly, the fourth cell cycle duration was longer for calf oocyte-derived embryos. Day 8 blastocysts from both sources had similar total cell numbers (calf: 89 +/- 20; cow: 100 +/- 30) and cell distribution between TE and ICM. The triglyceride content of day 7 blastocysts was similar for both sources (64 +/- 15 vs. 65 +/- 6 ng/embryo, respectively). In conclusion, calf oocyte-derived embryos are characterized by a higher rate of developmental arrest before the 9-cell stage and by a longer lag phase preceding the major onset of embryonic genome expression. These changes might be related to insufficient "capacitation" of the calf oocyte during follicular growth. Despite these differences, modifications in the quality of the resulting blastocysts were not detected.  相似文献   

8.
9.
Optimization of an in vitro culture that supports blastocyst (BL) development from single blastomeres (SBs) is essential to generate additional embryos for farm animals and humans and unravel the mechanisms that underlie totipotency. In this study, we have examined BL development from SBs that were derived from 2‐cell and 4‐cell mouse embryos in different media. Moreover, BLs were assessed for inner cell mass (ICM) by staining with Oct4. We found that BL development was improved in a lower volume of medium (1 µL) compared with a higher volume (5 µL). Furthermore, the supplementation of medium with the inhibitors of ERK1/2 and TGFβ (R2i) signaling pathways in 1 µL droplets of T6 medium improved BL development. The co‐culture of SBs with intact embryos in the presence of R2i showed more BL development and ICM to trophectoderm cell number ratio in comparison with SB culture and SB group culture. We also observed reduced total cell number, ICM, and trophectoderm cell numbers in all of the SB culture conditions versus intact embryo development. These findings might facilitate the successful generation of additional embryos for biomedical applications and elucidate the mechanisms that underlie totipotency.  相似文献   

10.
The in vitro viability of polyspermic pig eggs was investigated. Immature oocytes were matured and fertilized in vitro. Approximately 10 h after insemination, the eggs were centrifuged at 12 000 x g for 10 min and individually classified into two (2PN)- and poly-pronuclear (PPN, 3 or 4 pronuclei) eggs. The classified eggs were cultured in vitro or in vivo. Nuclei numbers of inner cell mass (ICM) and trophectoderm (TE) were compared between 2PN- and PPN-derived blastocysts. The frequency of development in vitro of 2PN and PPN eggs to the blastocyst stage was 53.6% and 40.7%, respectively. The mean number (8.2 +/- 0.7, n = 48) of ICM nuclei of 2PN-derived blastocysts was higher than that (4.2 +/- 0.8, n = 37) of PPN-derived blastocysts (p < 0.001), whereas there was no difference (p > 0.05) in mean numbers of total (46.7 +/- 3.4 vs. 39. 9 +/- 3.9) and TE nuclei (38.5 +/- 2.9 vs. 35.7 +/- 3.3) between the two groups. Development of 2PN and PPN eggs cultured in vivo to the blastocyst stage was 33.3% and 27.4%, respectively. The numbers of ICM and TE nuclei of these embryos cultured in vivo showed a pattern similar to that for the in vitro-produced blastocysts. Additionally, fetuses were obtained on Day 21 from both the 2PN and the PPN groups. This suggests that polyspermic pig embryos develop to the blastocyst stage and beyond, although showing a smaller ICM cell number as compared to normal embryos.  相似文献   

11.
In vivo bovine embryos were obtained by nonsurgical flushing of uterine horns of cows submitted to superovulatory treatment, while in vitro embryos were generated from oocytes collected from slaughtered donors. Lucifer Yellow injected into single blastomeres did not diffuse into neighboring cells until the morula stage in in vivo embryos and the blastocyst stage in in vitro embryos. In both cases diffusion was limited to a few cells. In contrast, diffusion was extensive in microsurgically isolated inner cell mass (ICM) but absent in the trophectoderm (TE). At the blastocyst stage, diffusion was always more extensive in in vivo than in in vitro embryos. Ultrastructural analyses confirmed these functional observations, and gap junction-like structures were observed at the blastocyst stage. These structures were diffuse in the ICM of in vivo embryos, scarce in the ICM of in vitro embryos and in the TE of in vivo embryos, and not observed in the TE of in vitro embryos. Blastomeres at all stages of development from the 2-cell stage to the blastocyst stage in in vitro embryos and at the morula and blastocyst stage in in vivo embryos were electrically coupled, and the junctional conductance (Gj) decreased in in vitro embryos from 4.18 +/- 1.70 nS (2-cell stage) to 0.37 +/- 0.12 nS (blastocyst stage). At each developmental stage, in vivo embryos showed a significantly (P < 0. 05) higher Gj than in vitro-produced embryos. Moreover, a significantly (P < 0.01) higher Gj was found in isolated ICM than in the respective blastocyst in both in vivo- and in vitro-produced embryos (3.5 +/- 1.4 vs. 0.7 +/- 0.3 and 2.6 +/- 1.6 vs. 0.37 +/- 0. 12 nS, respectively). The electrical coupling in absence of dye coupling in the early bovine embryo agrees with observations for embryos from other phyla. The late and reduced expression of intercellular communicative devices in in vitro-produced embryos may be one of the factors explaining their developmental low efficiency.  相似文献   

12.
The origin of the extraembryonic ectoderm of the chorion in the mouse embryo has long been the source of some controversy. Various manipulative studies suggested that it arose from the trophectoderm and not the inner cell mass (ICM) of the blastocyst. However, recent studies on the development of isolated ICMs in vitro have reported the formation of tissues morphologically resembling extraembryonic ectoderm. One explanation not excluded by previous studies is that the chorionic ectoderm is of dual origin, from both ICM and trophectoderm. The present study provides a more detailed analysis than previously possible of the in vivo fate of ICMs in chimeras, using a sensitive assay for glucose phosphate isomerase (GPI) isozymes which permits study of the chorionic ectoderm alone. In a large series of blastocyst injection chimeras, no donor ICM contribution to the mature chorionic ectoderm could be detected, donor activity appearing only in the embryonic fraction. Thus, the in vitro results cannot be readily explained by dual origin of the chorionic ectoderm and remain in conflict with existing in vivo data. Analysis of most ICM/morula chimeras revealed the same pattern, but a few showed ICM contributions to the trophoblast fractions, suggesting that some ICM cells retain the potential to form trophectoderm derivatives in vivo.  相似文献   

13.
14C-2-deoxyglucose (DG), currently employed in in vivo studies of brain glucose metabolism, has been used for determination of glucose consumption in the in vitro developing chick embryo. DG, presented in traces, accumulates in the embryo in proportion with incubation time. Analysis of tissue homogenates shows that the accumulated radioactivity is due to both phosphorylated (DGP) and nonphosphorylated DG. As it is only the radioactivity originating from the DGP that is proportional to glucose utilization, the nonphosphorylated DG must be washed out. The washout shows two distinct kinetics: a fast one corresponding to DG that has entered the cells but has not yet been phosphorylated and a slow one that is probably due to a dephosphorylated DGP coming from a different cellular compartment. On the basis of these results the optimal experimental conditions have been defined, allowing quantitative studies of glucose metabolism during the first day of development of the chicken embryo. From 18 to 24 hr of incubation (end of gastrulation), total glucose consumption increases from 50 nmol X h-1 at stage 3-4 to 90 nmol X h-1 at stage 6-7. This increase mainly reflects the growth of the blastodisc. Comparison with the values of O2 uptake measured at the same period of development suggests that only a fraction of the glucose consumed is oxidized, the major part being converted aerobically to lactate.  相似文献   

14.
The total glucose metabolism of 48-h spherical trophoblastic vesicles, Day-60 trophoblastic vesicles sections and Day-14 porcine blastocyst sections was measured by the method of O'Fallon and Wright (1). Trophoblastic vesicles were formed by enzyme dispersal in Day-14 porcine blastocysts. Glucose was based on DNA content of the tissue measured by diamino benzoic acid reaction with DNA (2). Slope of the lines (PMoles glucose utilized/4 h x DNA content) was different between Day-14 blastocyst sections and 48 h trophoblastic vesicles (P /= 0.05). Slopes of the lines were identical between 48-h trophoblastic vesicles and Day-60 trophoblastic vesicles sections (P >/= 0.87). Average glucose utilization on a per ng DNA basis was calculated. Day-14 blastocyst sections utilized 0.67 Pmoles glucose/4 h per ng DNA, Day-60 trophoblastic vesicles sections; 0.57; and 48-h sperical trophoblastic vesicles used 0.29. It is hypothesized that the change in glucose utilization between the Day-14 porcine blastocyst and enzymatically formed trophoblastic vesicles may be due to a decrease in metabolism as a consequence of in vitro culture. Further, it is theorized that Day-60 trophoblastic vesicles sections used higher quantities of glucose than 48-h sperical trophoblastic vesicles on a per ng DNA basis due to the increased availability of glucose to the cells of the inner layers, caused by the sectioning of the tissue. The results of this study identify changes in glucose metabolism of enzymatically formed porcine trophoblastic vesicles during culture. It is proposed that enzymatically-formed trophoblastic vesicles be used as a model system for the study of embyro metabolism.  相似文献   

15.
To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos.  相似文献   

16.
The objective of this study was to examine the effect of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Synchronised B6CBF1 female mice were mated either to a control male mouse or to one that had been exposed at 7, 21 or 35 days previously, for 24 h to an ambient temperature of 36+/-0.3 degrees C and 66+/-5.6% relative humidity. Embryos were collected from the oviducts of mice at 14-16 h, 34-39 h or 61-65 h after mating or from the uterus at 85-90 h after mating and their developmental status was evaluated morphologically. The number of cells within blastocysts was also determined using bisbenzimide-propidium iodide staining. Paternal heat stress 7 days before mating reduced the proportion of embryos developing from 4-cell (4-C) to morulae (M), hatched blastocysts, total blastocysts and the number of inner cell mass (ICM) and trophectoderm (TE) cells in the blastocyst. Paternal heat stress 21 days prior to mating reduced the proportion of 2-C and 4-C to M embryos with no embryos developing to blastocysts. There were also increases in the number of 1-C and abnormal embryos recorded at this time. Paternal heat stress 35 days before mating decreased the proportion of 2-C embryos, expanded blastocysts and ICM and TE cells in the blastocyst. These results support previous work demonstrating that both the sperm in the epididymis and germ cells in the testis are susceptible to damage by environmental heat stress, with spermatocytes being the most vulnerable. This study also demonstrates that subtle effects on the male such as a short exposure to elevated environmental temperatures can translate to quite profound paternal impacts on early embryo development.  相似文献   

17.
Glucose metabolism by preimplantation pig embryos   总被引:2,自引:0,他引:2  
Pig embryos were collected, 2-7 days after oestrus, in modified BMOC-2 containing glucose as the only energy source. Embryos were incubated individually in medium containing [5-(3)H]-, [1-(14)C]- or [6-(14)C]glucose. Total glucose metabolism, as measured by [5-(3)H]glucose use, increased steadily from the 1-cell to the 8-cell stage. Total glucose use increased (P less than 0.05) at the compacted morula stage and was highest (P less than 0.05) at the blastocyst stage. Production of 14CO2 from embryos metabolizing [1-(14)C]glucose increased steadily from the unfertilized ovum to the 8-cell stage. Metabolism of [1-(14)C]glucose increased at the compacted morula stage (P less than 0.05) and continued to increase (P less than 0.05) to the blastocyst stage. Metabolism of [6-(14)C]glucose increased steadily from the unfertilized ovum to the compacted morula stage. Metabolism of [6-(14)C]glucose was highest (P less than 0.05) for the blastocyst stage. Percentage pentose phosphate pathway activity of total glucose metabolism before the 4-cell stage was higher (greater than 5%) than that of 8-cell to blastocyst stage embryos (approximately 1%). When embryo metabolism was determined on a per cell basis for each isotope, the compacted morulae stage (16 cells) had a higher total glucose metabolism than all other embryo stages (P less than 0.05), while early blastocyst (32 cells) and blastocyst (64 cells) stage embryos metabolized more [5-(3)H]glucose than all stages except compacted morulae (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Cell polarity and development of the first epithelium   总被引:6,自引:0,他引:6  
In the 4 1/2 to 5 days between fertilization and implantation, the mouse conceptus must gain the abilities to implant and produce an embryo. Each of these is the sole developmental responsibility of one of two cell types forming the blastocyst, trophectoderm and inner cell mass (ICM), respectively. Trophectoderm is a polarized transporting epithelium while the ICM is an aggregate of non-epithelial pluripotent stem cells. These two cell types originate from the division of polar blastomeres when their cleavage furrows parallel their apical surfaces. Blastomeres polarize in response to asymmetric cell--cell contact, and understanding the mechanism of this induction is regarded as the key to understanding the origin of trophectoderm and ICM. Here we propose a model based on transcellular ion current loops for the induction of cell polarity during the development of the first epithelium, trophectoderm.  相似文献   

19.
Postimplantation development of mitomycin C-treated mouse blastocysts   总被引:3,自引:0,他引:3  
P P Tam 《Teratology》1988,37(3):205-212
Treatment of morula-stage mouse embryos with mitomycin C (0.004-0.5 microgram/ml) in vitro resulted in a decrease in the number of inner cell mass (ICM) cells at the blastocyst stage. The trophectoderm population was reduced only at the highest dosage (0.5 microgram/ml) tested. Postblastocyst development in vitro was retarded: Fewer embryos formed trophoblastic outgrowth, and the ICM was poorly developed. The embryo transfer experiments demonstrated that a reduction in ICM cell numbers diminished the potential of embryogenesis. The presence of a sufficient number of trophoblasts and ICM cells in the blastocyst is therefore a prerequisite for successful implantation and embryogenesis. The mitomycin-treated blastocysts with only 70% of normal ICM cells developed to egg cylinders that were about half normal size, but by days 12-14 the body size of the surviving embryo was similar to that of the control embryo. Morphogenesis was retarded during the early organogenesis stages, but only a slight delay was seen in the treated embryo on day 12. Such observation strongly suggests that a restorative phase of growth and morphogenesis has occurred during the immediate postimplantation period.  相似文献   

20.
Evidence indicates that oocyte/embryo quality in the sheep is affected by nutrient status during the cycle of conception. This study aimed to determine, in the superovulated ewe, if there are stages during the peri-conception period (-18 days to +6 days relative to the day of ovulation [Day 0]) when quality is more likely to be influenced by nutrition. In Experiment 1, ewes were provided with either a 0.5 x maintenance (L), 1.0 x maintenance (M) or 1.5 x maintenance (H) diet (in terms of daily energy requirements) during the peri-conception period. Diet did not affect the mean ovulation rate (range: 15.4+/-1.47 to 16.1+/-1.55) nor the mean number of embryos collected per ewe (range: 10.9+/-2.05 to 12.4+/-1.82) but there was an increase (P<0.05) in the mean number of cells per blastocyst in the L diet (74.7+/-1.45) compared with either the M (66.4+/-1.29) or H (62.0+/-0.84) diets. This increase was due to an increase in the number of trophectoderm (Tr) cells, resulting in a shift (P<0.05) in the Tr:inner cell mass (ICM) cell ratio (range 0.69+/-0.03 to 0.73+/-0.04). In Experiment 2, six diets (HHH, MHH, MHL, MLH, MLL and LLL) were imposed during three 6-day periods commencing 12 days before and continuing until 6 days after ovulation. Although diet had minimal effect on the superovulatory response, both the mean number of cells per blastocyst and the Tr:ICM ratio were increased (P<0.05) when the L diet was provided after Day 0 (diets MHL, MLL and LLL). It is concluded that the ewe is able to respond to acute changes in nutrition imposed immediately after ovulation, resulting in changes in embryo development including cell lineage differentiation. The significance of these findings, in terms of fetal development, embryo-maternal signalling and the nutritional management of the ewe is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号