首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several series of amphiphiles of increasing chain length were tested for their abilities to modify the L alpha-HII transition of dielaidoylphosphatidylethanolamine using differential scanning calorimetry. Acylcarnitines, alkyl sulfates, alkylsulfobetaines, and phosphatidylcholines, with chain lengths between about 6 and 12 carbon atoms, show an increasing capacity to raise the L alpha-HII phase transition temperature of phosphatidylethanolamine. This is ascribed to increased partitioning of the added amphiphile from water into the membrane as the chain length increases. Alkyl sulfates and alkyltrimethylammonium bromides have diminished capacities to raise the L alpha-HII transition temperature as the chain length is increased from 12 to 16. This is caused by an increase in the hydrophobic portion of the amphiphile leading to a change in the intrinsic radius of curvature and a decrease in the hydrocarbon packing constraints in the HII phase relative to the shorter chain amphiphiles. The L alpha-HII transition temperature of phosphatidylethanolamine with acylcarnitines of chain length 14-20 carbon atoms, alkylsulfobetaines above 14 carbon atoms, and phosphatidylcholines with acyl groups having above 10 carbon atoms is relatively insensitive to chain length. We suggest that this is caused by a balance between increasing hydrocarbon volume promoting the HII phase through decreased intrinsic radius of curvature and greater relief of hydrocarbon packing constraints vs greater intermolecular interactions favoring the more condensed L alpha phase. This latter effect is more important for amphiphiles with large headgroups which can pack more efficiently in the L alpha phase. The phosphatidylcholines show a gradual decrease in bilayer stabilization between 10 and 22 carbon atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mixed-chain phosphatidylcholine bilayers: structure and properties   总被引:10,自引:0,他引:10  
J Mattai  P K Sripada  G G Shipley 《Biochemistry》1987,26(12):3287-3297
Calorimetric and X-ray diffraction data are reported for two series of saturated mixed-chain phosphatidylcholines (PCs), 18:0/n:0-PC and n:0/18:0-PC, where the sn-1 and sn-2 fatty acyl chains on the glycerol backbone are systematically varied by two methylene groups from 18:0 to 10:0 (n = 18, 16, 14, 12, or 10). Fully hydrated PCs were annealed at -4 degrees C and their multilamellar dispersions characterized by differential scanning calorimetry and X-ray diffraction. All mixed-chain PCs form low-temperature "crystalline" bilayer phases following low-temperature incubation, except 18:0/10:0-PC. The subtransition temperature (Ts) shifts toward the main (chain melting) transition temperature (Tm) as the sn-1 or sn-2 fatty acyl chain is reduced in length; for the shorter chain PCs (18:0/12:0-PC, 12:0/18:0-PC, and 10:0/18:0-PC), Ts is 1-2 degrees C greater than Tm, and the subtransition enthalpy (delta Hs) is much greater than for the longer acyl chain PCs. Tm decreases with acyl chain length for both series of PCs except 18:0/10:0-PC, while for the positional isomers, n:0/18:0-PC and 18:0/n:0-PC, Tm is higher for the isomer with the longer acyl chain in the sn-2 position of the glycerol backbone. The conversion from the crystalline bilayer Lc phase to the liquid-crystalline L alpha phase with melted hydrocarbon chains occurs through a series of phase changes which are chain length dependent. For example, 18:0/18:0-PC undergoes the phase changes Lc----L beta'----P beta'----L alpha, while the shorter chain PC, 10:0/18:0-PC, is directly transformed from the Lc phase to the L alpha phase. However, normalized enthalpy and entropy data suggest that the overall thermodynamic change, Lc----L alpha, is essentially chain length independent. On cooling, the conversion to the Lc phases occurs via bilayer gel phases, L beta', for the longer chain PCs or through triple-chain interdigitated bilayer gel phases, L beta, for the shorter chain PC 18:0/12:0-PC and possibly 10:0/18:0-PC. Molecular models indicate that the bilayer gel phases for the more asymmetric PC series, 18:0/n:0-PC, must undergo progressive interdigitation with chain length reduction to maintain maximum chain-chain interaction. The L beta phase of 18:0/10:0-PC is the most stable structure for this PC below Tm. The formation and stability of the triple-chain structures can be rationalized from molecular models.  相似文献   

3.
1. Phosphatidylcholines of different acyl-chain composition and a preparation of ATPase complex depleted of phospholipids have been employed in order to evaluate the contribution of lipid bilayer to the assembly of this multi-subunit component of mitochondrial membrane. 2. At the minimal requirement for bilayer assembly (dinonanoylphosphatidylcholine, mixtures of lysophosphatidylcholine and phosphatidylcholine), fragments with oligomycin-insensitive ATPase activity are reconstituted. Conformational changes with dislocation of ATPase complex subunits may explain these results. 3. At increased strength of acyl-chain interaction (dilauroylphosphatidylcholine and higher homologues), the damage to the ATPase complex is prevented but this is not sufficient to achieve functional restoration. Bilayers with a tendency to coalesce and fuse aggregate in large amounts with the complex and yield low ATPase reactivation. Bilayers of high stability yield complexes with physiological content of phospholipids and efficient ATPase activity. Transition between these two possibilities is found at sixteen carbon acyl-chains. Only at this chain length does the cholate dialysis procedure of reconstitution become feasible. 4. It is concluded that a minimum of 16 carbon atoms in each chain are required to organize a bilayer structurable to maintain the ATPase complex conformation and to sustain the transmembrane position of the whole assembly.  相似文献   

4.
The effect of linear monoamines on dimyristoylphosphatidylglycerol and dimyristoylphosphatidylcholine multilamellar liposomes was studied as a function of their length and compared with the behavior of linear carboxylic acids. The role of the hydrophobic interactions was demonstrated and the free energy of the binding for each interacting carbon atom was determined. The thermotropic behavior of the liposomes was characterized by differential scanning calorimetry and it was shown that these molecules affect the temperature and the cooperativity of the gel to fluid state transition of the membrane differently. In particular, it appeared that membrane perturbation was maximum when the chain length of the amphipathic molecules ranged between 7 and 9 carbon atoms, with more pronounced effects in the case of monoamines. Molecules shorter than 3-4 carbon atoms did not produce any observable change in the transition temperature. The study was extended to linear alpha,omega-diamines to investigate the amphipathic character of long diamines and to investigate the role of bridging bonds established with neighboring phospholipids.  相似文献   

5.
1. The role of length and unsaturation of phospholipid acyl chains in the activation of ATPase complex was studied with synthetic phosphatidylcholines and a phospholipid-dependent preparation obtained after cholate-extraction of submitochondrial particles (Kagawa, Y. and Racker, E. (1966) J. Biol. Chem. 241, 2467--2474). 2. Micelle-forming, short-chain phosphatidylcholines produced activation only at critical micellar concentration. The reactivated complex was cold-stable but the oligomycin sensitivity was low. 3. Bilayer-forming saturated phosphatidylcholines produced activation which was maximal at 9 carbon atoms in each chain but decreased sharply as the chain-length was increased and essentially disappeared at 14 carbon atoms. By contrast the oligomycin-sensitivity increased with the increase in chain length. 4. Activation of ATPase complex reappeared when bilayers were formed with long-chain unsaturated phosphatidylcholines. The activity was oligomycin sensitive. Significant inhibition of activity was observed also after incorporation of cholesterol into the bilayers. 5. By contrast the activation induced by negatively charged liposomes of diacylphosphatidylglycerol was independent on acyl-chain composition and occurred at very low amounts of phospholipid. 6. The discontinuity in the Arrhenius plot of activity of the ATPase complex reactivated with saturated phospholipids was found at temperatures close to the gel-to-liquid crystalline transition of the lipid showing that the activity of ATPase complex was sensitive to the physical state of membrane phospholipids. 7. It is concluded that (a) reactivation of ATPase complex by isoelectric phospholipids is an interfacial activation, the minimum requirement for the lipid effect being micelle formation. (b) In order to gain the properties of the native complex a stable lamellar phase is needed. Both activity and oligomycin sensitivity are regulated by the chain length and degree of unsaturation of phospholipid acyl chains.  相似文献   

6.
Scanning microcalorimetry has been used to study the high pressure effect on the main transition from the ripple gel P'(beta) phase to the liquid crystal (L(alpha)) phase in DPPC (dipalmitoylphosphatidylcholine). It has been demonstrated that an increase of the pressure by 200 MPa shifts the transition to higher temperatures by 36.4 degrees. The pressure increase does not affect the cooperativity of transition but reduces noticeably its enthalpy. The changes of the molar partial volume, isothermal compressibility as well as volume thermal expansibility during transition in DPPC suspension have been estimated. It has been shown that monovalent ions (Na(+), Cl(-)) in solution slightly affect the main thermodynamic parameters of the transition. Calcium ions significantly decrease distinction in compressibility and thermal expansibility between liquid-crystal and ripple gel phases of lipid suspension, which in its turn reflects less difference in their volume fluctuations.  相似文献   

7.
The role carbohydrate moieties play in determining the structure and energetics of glycolipid model membranes has been investigated by small- and wide-angle X-ray scattering, differential scanning densitometry (DSD), and differential scanning microcalorimetry (DSC). The dependence of a variety of thermodynamic and structural parameters on the stereochemistry of the OH groups in the pyranose ring and on the size of the sugar head group has been studied by using an homologous series of synthetic stereochemically uniform glyceroglycolipids having glucose, galactose, mannose, maltose, or trimaltose head groups and saturated ether-linked alkyl chains with 10, 12, 14, 16, or 18 carbon atoms per chain. The combined structural and thermodynamic data indicate that stereochemical changes of a single OH group in the pyranose ring can cause dramatic alterations in the stability and in the nature of the phase transitions of the membranes. The second equally important determinant of lipid interactions in the membrane is the size of the head group. A comparison of lipids with glucose, maltose, or trimaltose head groups and identical hydrophobic moieties has shown that increasing the size of the neutral carbohydrate head group strongly favors the bilayer-forming tendency of the glycolipids. These experimental results provide a verification of the geometric model advanced by Israelachvili et al. (1980) [Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980) Q. Rev. Biophys. 13, 121-200] to explain the preferences lipids exhibit for certain structures. Generally galactose head groups confer highest stability on the multilamellar model membranes as judged on the basis of the chain-melting transition. This is an interesting aspect in view of the fact that galactose moieties are frequently observed in membranes of thermophilic organisms. Glucose head groups provide lower stability but increase the number of stable intermediate structures that the corresponding lipids can adopt. Galactolipids do not even assume a stable intermediate L alpha phase for lipids with short chain length but perform only Lc----HII transitions in the first heating. The C2 isomer, mannose, modifies the phase preference in such a manner that only L beta----HII changes can occur. Maltose and trimaltose head groups prevent the adoption of the HII phase and permit only L beta----L alpha phase changes. The DSD studies resulted in a quantitative estimate for the volume change associated with the L alpha----HII transition of 14-Glc. The value of delta v = 0.005 mL/g supports the view that the volume difference between L alpha and HII is minute.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A series of 3(2H)-pyridazinone derivatives was evaluated for their affinity in vitro towards alpha1-alpha2-adrenoceptors by radioligand receptor binding assays. All target compounds showed good affinities for the alpha1-adrenoceptor (with Ki values in the subnanomolar range), and a gradual increase in affinity was observed by increasing the polymethylene chain length of this series up to a maximum of six and seven carbon atoms, when the fragment 4-[2-(2-methoxyphenoxy)-ethyl]-1-piperazinyl is linked in 5 position of the 3(2H)-pyridazinone ring, while a slight decrease was found for the higher homologues. Increasing the chain length when the 4-[2-(2-methoxyphenoxy)-ethyl]-1-piperazinyl group is linked in 6 position of the 3(2H)-pyridazinone ring, had a different effect: there is the highest affinity when the polymethylene chain is of four carbon atoms. The alkylic chain, a spacer between the two major constituents of the molecule, can influence the affinity and the selectivity.  相似文献   

9.
The ability to oxidize n-alkanes was studied with various species of fungi belonging to the Cunninghamella genus. These fungi are able to assimilate hydrocarbons and to accumulate up to 1.5 g/litre of biomass. The most active strain was Cunninghamella elegans (-) 1204. The amount of lipids formed, and their composition, depended on the length of the carbon chain of oxidized alkane. The content of fat in the cells increased with the length of the hydrocarbon chain. The following lipid fractions have been detected: phospholipids, monoglycerides, diglycerides, triglycerides, sterols, free fatty acids, sterol esters, and hydrocarbons. The qualitative composition of the fractions depended, to a considerable extent, on the n-alkane utilized. Investigation of the fatty-acid composition of intracellular lipids has shown that fatty acids with an even number of carbon atoms are formed from hydrocarbons with an even number of these atoms, while fatty acids both with an even and odd number of carbon atoms are synthesized from hydrocarbons with an odd number of these atoms. The relative content of the acids with the same number of carbon atoms as that of the alkane being utilized increased with the length of the carbon chain.  相似文献   

10.
The effect of the length of the side chain of sterols on their interaction with phosphatidylcholine was studied by measuring the permeability properties of liposomes constituted with sterol analogues with side chains of various lengths. The sensitivities of liposomes constituted with these sterol analogues toward digitonin and polyene antibiotics were also examined.The effects of sterols on phase transition of phosphatidylcholine were examined by measuring their effects on permeability increase due to perturbation of phase equilibrium and by differential scanning calorimetry. An analogue with a short side chain, isopropyl (C-22), had a very similar effect to cholesterol in suppressing the permeability increase, suggesting that the full length of the side chain is not necessary for this effect.The permeability of egg yolk phosphatidylcholine at 42°C was suppressed as much by the analogue C-22 as by cholesterol. Androstene-3-β-ol, an analogue without a side chain, however, had little suppressive effect. Thus it is concluded that the condensing effect of sterol requires a side chain, but not the full length of side chain.Liposomes constituted with analogues having a side chain with more than 5 carbon atoms showed maximum reactivity with a polyene antibiotic, amphotericin B, whereas those constituted with analogues having a side chain with less than 4 carbon atoms showed weaker reactivity. These findings indicate that a side chain with more than 5 carbon atoms is essential for the maximum interaction of liposomes with amphotericin B. Unlike amphotericin B, filipin reacted almost equally well with liposomes containing C-22 and with those containing cholesterol. Thus the chain length of the side chain of sterol is less important for interaction of liposomes with filipin than for their interaction with amphotericin B.Liposomes containing analogues having a side chain with more than 6 carbon atoms showed maximum reactivity with digitonin. Thus for the maximum interaction of liposomes with digitonin, the side chain of sterol should be longer than 6 carbon atoms.  相似文献   

11.
The phase behaviour of aqueous dispersions of a series of synthetic 1,2-di-O-alkyl-3-O-(beta-D-glucosyl)-rac-glycerols with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry and low angle X-ray diffraction (XRD). Thermograms of these lipids show a single, strongly energetic phase transition, which was shown to correspond to either a lamellar gel/liquid crystalline (L(beta)/L(alpha)) phase transition (short chain compounds, n < or =14 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (longer chain compounds, n > or =15 carbon atoms) by XRD. The shorter chain compounds may exhibit additional transitions at higher temperatures, which have been identified as lamellar/nonlamellar phase transitions by XRD. The nature of these nonlamellar phases and the number of associated intermediate transitions can be seen to vary with chain length. The thermotropic phase properties of these lipids are generally similar to those reported for the corresponding 1,2-sn-diacyl alpha- and beta-D-glucosyl counterparts, as well as the recently published 1, 2-dialkyl-3-O-(beta-D-glycosyl)-sn-glycerols. However, the racemic lipids studied here show no evidence of the complex patterns of gel phase polymorphism exhibited by the above mentioned compounds. This suggests that the chirality of the glycerol molecule, by virtue of its position in the interfacial region, may significantly alter the phase properties of a lipid, perhaps by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.  相似文献   

12.
Dumas F  Tocanne JF  Leblanc G  Lebrun MC 《Biochemistry》2000,39(16):4846-4854
The structural and functional consequences of a mismatch between the hydrophobic thickness d(P) of a transmembrane protein and that d(L) of the supporting lipid bilayer were investigated using melibiose permease (MelB) from Escherichia coli reconstituted in a set of bis saturated and monounsaturated phosphatidylcholine species differing in acyl-chain length. Influence of MelB on the midpoint gel-to-liquid-phase transition temperature, T(m), of the saturated lipids was investigated through fluorescence polarization experiments, with 1,6-diphenyl-1,3,5-hexatriene as the probe, for varying protein/lipid molar ratio. Diagrams in temperature versus MelB concentration showed positive or negative shifts in T(m) with the short-chain lipids DiC12:0-PC and DiC14:0-PC or the long-chain lipids DiC16:0-PC and DiC18:0-PC, respectively. Theoretical analysis of the data yielded a d(L) value of 3.0 +/- 0.1 nm for the protein, similar to the 3.02 nm estimated from hydropathy profiles. Influence of the acyl chain length on the carrier activity of MelB was investigated in the liquid phase, using the monounsaturated PCs. Binding of the sugar to the transporter showed no dependence on the acyl chain length. In contrast, counterflow and Deltapsi-driven experiments revealed strong dependence of melibiose transport on the lipid acyl chain length. Similar bell-shaped transport versus acyl chain length profiles were obtained, optimal activity being supported by diC16:1-PC. On account of a d(P) value of 2.65 nm for the lipid and of various local constraints which would all tend to elongate the acyl chains in contact with the protein, one can conclude that maximal activity was obtained when the hydrophobic thickness of the bilayer matched that of the protein.  相似文献   

13.
R N Lewis  N Mak  R N McElhaney 《Biochemistry》1987,26(19):6118-6126
The thermotropic phase behavior of a series of 1,2-diacylphosphatidylcholines containing linear saturated acyl chains of 10-22 carbons was studied by differential scanning calorimetry. When fully hydrated and thoroughly equilibrated by prolonged incubation at appropriate low temperatures, all of the compounds studied form an apparently stable subgel phase (the Lc phase). The formation of the stable Lc phase is a complex process which apparently proceeds via a number of metastable intermediates after being nucleated by incubation at appropriate low temperatures. The process of Lc phase formation is subject to considerable hysteresis, and our observations indicate that the kinetic limitations become more severe as the length of the acyl chain increases. The kinetics of Lc phase formation also depend upon whether the acyl chains contain an odd or an even number of carbon atoms. The Lc phase is unstable at higher temperatures and upon heating converts to the so-called liquid-crystalline state (the L alpha phase). The conversion from the stable Lc to the L alpha phase can be a direct, albeit a multistage process, as observed with very short chain phosphatidylcholines, or one or more stable gel states may exist between the Lc and L alpha states. For the longer chain compounds, conversions from one stable gel phase to another become separated on the temperature scale, so that discrete subtransition, pretransition, and gel/liquid-crystalline phase transition events are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The interactions of a series of alcohols, acids and quaternary ammonium salts with a phosphatidylcholine-water model biomembrane (dipalmitoyl phosphatidylcholine) system have been studied using differential scanning calorimetry. In particular the effects of these molecules upon the lipid endothermic phase transitions were investigated over a range of concentrations. A variety of effects was observed. (a) Those molecules which shift or broaden the main lipid transition can also remove the pretransition endotherm. (b) n-Alcohols and n-monocarboxylic acids containing the same number of carbon atoms have very similar effects at molar concentrations up to 40%. Those molecules containing 12 or more carbon atoms raise the main lipid phase transition whilst those molecules containing 10 or less carbon atoms lower this transition temperature. (c) The phase diagram of stearoyl alcohol in the phosphatidylcholine-water system shows the formation of lipid-alcohol complexes. (d) Alkyl trimethyl ammonium bromides showed behaviour which differs considerably from n-alcohols and n-carboxylic acids of the same chain length. (e) Other alkyltrialkyl and tetraalkylammonium bromides show that a variety of effects on the lipid phase transition can be obtained. (f) With the homologous series of phenylalkyl alcohols from benzyl alcohol to 4-phenyl butanol increasing the number of methylenes between the terminal OH and the benzene ring leads to greater interaction between solute and bilayer.The range of different effects obtained with the compounds studied offers a means for introducing various degrees and types of perturbation into membrane systems.  相似文献   

15.
The bilayer phase transitions of six kinds of mixed-chain phosphatidylcholines (PCs) with an unsaturated acyl chain in the sn-1 or sn-2 position, 1-oleoyl-2-stearoyl- (OSPC), 1-stearoyl-2-oleoyl- (SOPC), 1-oleoyl-2-palmitoyl- (OPPC), 1-palmitoyl-2-oleoyl- (POPC), 1-oleoyl-2-myristoyl- (OMPC) and 1-myristoyl-2-oleoyl-sn-glycero-3-phosphocholine (MOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light transmittance measurements. Bilayer membranes of SOPC, POPC and MOPC with an unsaturated acyl chain in the sn-2 position exhibited only one phase transition, which was identified as the main transition between the lamellar gel (Lβ) and liquid crystalline (Lα) phases. On the other hand, the bilayer membranes of OSPC, OPPC and OMPC with an unsaturated acyl chain in the sn-1 position exhibited not only the main transition but also a transition from the lamellar crystal (Lc) to the Lβ (or Lα) phase. The stability of their gel phases was markedly affected by pressure and chain length of the saturated acyl chain in the sn-2 position. Considering the effective chain lengths of unsaturated mixed-chain PCs, the difference in the effective chain length between the sn-1 and sn-2 acyl chains was proven to be closely related to the temperature difference of the main transition. That is, a mismatch of the effective chain length promotes a temperature difference of the main transition between the positional isomers. Anomalously small volume changes of the Lc/Lα transition for the OPPC and OMPC bilayers were found despite their large enthalpy changes. This behavior is attributable to the existence of a cis double bond and to significant inequivalence between the sn-1 and sn-2 acyl chains, which brings about a small volume change for chain melting due to loose chain packing, corresponding to a large partial molar volume, even in the Lc phase. Further, the bilayer behavior of unsaturated mixed-chain PCs containing an unsaturated acyl chain in the sn-1 or sn-2 position was well explained by the chemical-potential diagram of a lipid in each phase.  相似文献   

16.
The recently solved three-dimensional structure of the thermophilic esterase 2 from Alicyclobacillus acidocaldarius allowed us to have a snapshot of an enzyme-sulfonate complex, which mimics the second stage of the catalytic reaction, namely the covalent acyl-enzyme intermediate. The aim of this work was to design, by structure-aided analysis and to generate by site-directed and saturation mutagenesis, EST2 variants with changed substrate specificity in the direction of preference for monoacylesters whose acyl-chain length is greater than eight carbon atoms. Positions 211 and 215 of the polypeptide chain were chosen to introduce mutations. Among five variants with single and double amino acid substitutions, three were obtained, M211S, R215L, and M211S/R215L, that changed the catalytic efficiency profile in the desired direction. Kinetic characterization of mutants and wild type showed that this change was achieved by an increase in k(cat) and a decrease in K(m) values with respect to the parental enzyme. The M211S/R215L specificity constant for p-nitrophenyl decanoate substrate was 6-fold higher than the wild type. However, variants M211T, M211S, and M211V showed strikingly increased activity as well as maximal activity with monoacylesters with four carbon atoms in the acyl chain, compared with the wild type. In the case of mutant M211T, the k(cat) for p-nitrophenyl butanoate was 2.4-fold higher. Overall, depending on the variant and on the substrate, we observed improved catalytic activity at 70 degrees C with respect to the wild type, which was a somewhat unexpected result for an enzyme with already high k(cat) values at high temperature. In addition, variants with altered specificity toward the acyl-chain length were obtained. The results were interpreted in the context of the EST2 three-dimensional structure and a proposed catalytic mechanism in which k(cat), e.g. the limiting step of the reaction, was dependent on the acyl chain length of the ester substrate.  相似文献   

17.
Refsum disease is a peroxisomal disorder characterized by adult-onset retinitis pigmentosa, anosmia, sensory neuropathy, ataxia, and an accumulation of phytanic acid in plasma and tissues. Approximately 45% of cases are caused by mutations in phytanoyl-CoA hydroxylase (PAHX), the enzyme catalyzing the second step in the peroxisomal alpha-oxidation of 3-methyl-branched fatty acids. To study the substrate specificity of human PAHX, different 3-alkyl-branched substrates were synthesized and incubated with a recombinant polyhistidine-tagged protein. The enzyme showed activity not only toward racemic phytanoyl-CoA and the isomers of 3-methylhexadecanoyl-CoA, but also toward a variety of other mono-branched 3-methylacyl-CoA esters with a chain length down to seven carbon atoms. Furthermore, PAHX hydroxylated a 3-ethylacyl-CoA quite well, whereas a 3-propylacyl-CoA was a poor substrate. Hydroxylation of neither 2- or 4-methyl-branched acyl-CoA esters, nor long or very long straight-chain acyl-CoA esters could be detected. The results presented in this paper show that the substrate specificity of PAHX, with regard to the length of both the acyl-chain and the branch at position 3, is broader than expected. Hence, Refsum disease might be characterized by an accumulation of not only phytanic acid but also other 3-alkyl-branched fatty acids.  相似文献   

18.
We have recently reported the synthesis of a platinum(II) complex, made of estradiol, the female sex hormone, and a cisplatin analog, an anticancer drug, linked together by an eleven carbon atoms chain. The novel estradiol-Pt(II) hybrid molecule was synthesized in nine chemical steps with 10% overall yield. This new compound has been tested in vitro on estrogen-dependent (MCF-7) and -independent (MDA-MD-231) (ER(+) and ER(-)) cell lines. Interestingly, the biological activity was quite significant, more potent than that of cisplatin, the compound currently used in chemotherapy. The estrogen receptor binding affinity (ERBA) of this compound was very similar to that of 17beta-estradiol (E(2)) on both estrogen receptors (ERs), alpha and beta. In order to further study this type of molecule, we have decided to synthesize several analogs with the same estrogenic scaffold but with various chain lengths separating the estradiol from the toxic part of the molecule. This was planned in order to study the effect of the length of the linking chain on the biological activity of the hybrids. Four E(2)-Pt(II) hybrid molecules having 6-14 carbon atoms linking chain have been synthesized using a new synthetic methodology. They are synthesized in only eight chemical steps with 21% overall yield. The 17beta-estradiol-linked platinum(II) complexes have been tested for their receptor binding affinity as well as for their cytocidal activity on several breast cancer cell lines. The synthesis and biological results are reported herein.  相似文献   

19.
Summary Extracellular oxidation products having the same number of carbon atoms as the alkane that was oxidized were isolated from a Fusarium lini culture broth grown on n-dodecane. They were secondary isomeric alcohols, corresponding isomeric ketones and isomeric esters with 12 carbon atoms.Esterase activity in cell-free extracts of the fungus which was incubated on a p-nitrophenyl-acetate substrate increased with increasing temperatures and pH-values in the ranges 20–40°C and pH 6.0 to 8.0 respectively. The activity, when incubated on p-nitrophenyl-acetate,-laurate and-palmitate substrates, decreased with decreasing fatty acid chain lengths. When incubated with isomeric esters consisting of 12 carbon atoms, it was influenced by the ester linkage position in the chain. When the alcohol chain length in the ester increased from one to six carbon atoms, the esterase activity decreased. The same effect was observed when the chain length of the acid increased from two to six carbon atoms. Minimum esterase activity was reached when both the alcohol and the acid had a chain length of six carbon atoms.The view that all ketones produced during subterminal oxidation of alkanes by Fusarium lini and perhaps other members of Moniliales are further metabolized via ester intermediates is supported. A probable non-specific esterase or lipase catalyses the hydrolysis of the isomeric esters which are formed from the ketones.  相似文献   

20.
Wang J  Yan Z  Zhuo K  Lu J 《Biophysical chemistry》1999,80(3):179-188
The apparent molar volumes V(2,phi) have been determined for glycine, DL-alpha-alanine, DL-alpha-amino-n-butyric acid, DL-valine and DL-leucine in aqueous solutions of 0.5, 1.0, 1.5 and 2.0 mol kg(-1) sodium acetate by density measurements at 308.15 K. These data have been used to derive the infinite dilution apparent molar volumes V(0)(2,phi) for the amino acids in aqueous sodium acetate solutions and the standard volumes of transfer, Delta(t)V(0), of the amino acids from water to aqueous sodium acetate solutions. It has been observed that both V(0)(2,phi) and Delta(t)V(0) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. These linear correlations have been utilized to estimate the contributions of the charged end groups (NH(3)(+), COO(-)), CH(2) group and other alkyl chains of the amino acids to V(0)(2,phi) and Delta(t)V(0). The results show that V(0)(2,phi) values for (NH(3)(+), COO(-)) groups increase with sodium acetate concentration, and those for CH(2) are almost constant over the studied sodium acetate concentration range. The transfer volume increases and the hydration number of the amino acids decreases with increasing electrolyte concentrations. These facts indicate that strong interactions occur between the ions of sodium acetate and the charged centers of the amino acids. The volumetric interaction parameters of the amino acids with sodium acetate were calculated in water. The pair interaction parameters are found to be positive and decreased with increasing alkyl chain length of the amino acids, suggesting that sodium acetate has a stronger dehydration effect on amino acids which have longer hydrophobic alkyl chains. These phenomena are discussed by means of the co-sphere overlap model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号