首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS.  相似文献   

2.
3.
Caffeine is the most widely consumed psychoactive substance in the world. It can elevate the level of glucocorticoid which is involved in metabolism regulation, stress response, and immune function. However, the specific mechanism has yet to be elucidated. Glucocorticoid is steroid hormone synthesized in adrenal cortex and the key rate-limiting step in its biosynthesis is mediated by steroidogenic acute regulatory protein (StAR). This study was designed to investigate the direct effects and inheritable epigenetic mechanisms of caffeine on cortisol production and StAR expression in human adrenocortical cells. The human adrenocortical cell line NCI-H295A was cultured with 0.4-40μM caffeine. There was a significant increase of the cortisol production in cells. In both acutely and chronically caffeine-treated cell groups, mRNA and protein expressions of StAR were stimulated in a dose-dependent manner. DNA methylation detection via bisulfite-sequencing PCR (BSP) uncovered a single site CpG demethylation at nt -682 within the StAR promoter region. Then we investigated how long the increased StAR expression and the single CpG demethylation could last. The caffeine was withdrawn after 48h of treatment and then the cells were continually subcultured for up to 5 and 10 passages, respectively. The results showed that the StAR expression at post-caffeine passage 10 still increased, as compared with that in the control. The caffeine-induced demethylation at nt -682 in StAR promoter underwent a similar time course as StAR expression does. The present study reveals the direct effect and possible inheritable epigenetic mechanism of caffeine on steroidogenesis in human adrenocortical cells and has implications for our understanding of the consumption of caffeine.  相似文献   

4.
Obesity is frequently associated with malfunctions of the hypothalamus-pituitary-adrenal (HPA) axis and hyperaldosteronism, but the mechanism underlying this association remains unclear. Since the adrenal glands are embedded in adipose tissue, direct cross-talk between adipose tissue and the adrenal gland has been proposed. A previous study found that adiponectin receptor mRNA was expressed in human adrenal glands and aldosterone-producing adenoma (APA). However, the expression of adiponectin receptors in adrenal glands has not been confirmed at the protein level or in other species. Furthermore, it is unclear whether adiponectin receptors expressed in adrenal cells are functional. We found, for the first time, that adiponectin receptor (AdipoR1 and AdipoR2) mRNA and protein were expressed in mouse adrenal and adrenocortical Y-1 cells. However, adiponectin itself was not expressed in mouse adrenal or Y-1 cells. Furthermore, adiponectin acutely reduced basal levels of corticosterone and aldosterone secretion. ACTH-induced steroid secretion was also inhibited by adiponectin, and this was accompanied by a parallel change in the expression of the key genes involved in steroidogenesis. These findings indicate that adiponectin may take part in the modulation of steroidogenesis. Thus, adiponectin is likely to have physiological and/or pathophysiological significance as an endocrine regulator of adrenocortical function.  相似文献   

5.
6.
7.
The steroidogenic acute regulatory (StAR) protein, a novel phosphoprotein, is a crucial factor involved in intramitochondrial cholesterol transportation, the rate-limiting step in steroidogenesis. The present investigations were undertaken to elucidate involvement of thyroid hormone and StAR protein in the regulation of steroidogenesis in mouse Leydig cells. Treatment of cells with triiodothyronine (T3) coordinately augmented the levels of StAR protein, StAR mRNA, and steroid production, and these responses were progressively dependent on expression of steroidogenic factor 1 (SF-1). With regard to steroidogenesis and StAR expression, the T3 response requires both on-going mRNA and protein synthesis. In addition, the effects of T3 were acutely modulated at the steroidogenic machinery and luteinizing hormone receptor (LHR) function, while these levels were suppressed following longer periods of exposure to T3. Furthermore, the inhibition of SF-1 expression by DAX-1 markedly abolished T3-mediated StAR expression in a time frame, which was consistent with decreased steroid biosynthesis. Specific involvement of SF-1 was further confirmed by assessing the 5′-flanking region of the mouse StAR gene, which identified a region between −254 and −110 bp that was essential for T3 function. Importantly, it was found that the SF-1 binding site at position −135 bp of the 5′-flanking region was greatly involved in T3-mediated reporter activity. Electrophoretic mobility shift assays (EMSA) also demonstrated involvement of SF-1 in T3 function. The relevance of T3-mediated LHR function was investigated in mice rendered hypo-and hyperthyroid, which accounted for up-regulation in the former and down-regulation in the latter group, respectively. These findings demonstrate a key role of thyroid hormone in maintaining mouse Leydig cell function, where thyroid hormone and StAR protein coordinately regulate steroid hormone biosynthesis.  相似文献   

8.
9.
10.
Otani M  Kogo M  Furukawa S  Wakisaka S  Maeda T 《Cytokine》2012,57(2):238-244
CTRP3, a paralog of adiponectin, is a member of the C1q and tumor necrosis factor (TNF)-related protein (CTRP) superfamily. It is expressed at high levels in adipose tissue and has recently emerged as a novel adipokine. In the present study, we provide the first evidence for a physiological role of the new adipokine, CTRP3, in the reproductive system. CTRP3 was specifically expressed in interstitial Leydig cells, where testosterone is produced, in the adult mouse testis. CTRP3 increased testosterone production by TM3 mouse Leydig cells in a dose-dependent manner. The increased testosterone production was linked to upregulation of steroidogenic proteins expression, such as steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage cytochrome P450 (P450scc). Moreover, increases in intracellular cyclic AMP (cAMP) concentrations and the phosphorylation of cAMP-response element binding protein (CREB) in CTRP3-stimulated TM3 Leydig cells were observed. Inhibition of this signaling pathway by a specific protein kinase A (PKA) inhibitor, H89, blocked testosterone production in CTRP3-stimulated Leydig cells, suggesting that the stimulatory effect of CTRP3 on testosterone production is associated with activation of the cAMP/PKA signaling pathway. Thus, our results demonstrate a physiological role for CTRP3 in testicular steroidogenesis and provide novel insights in the intracellular mechanisms activated by this protein.  相似文献   

11.
Li LA  Xia D  Wei S  Hartung J  Zhao RQ 《Steroids》2008,73(8):806-814
Our previous study demonstrated significant difference in the basal plasma cortisol levels between Erhualian (EHL) and Pietrain (PIE) pigs, implicating fundamental breed difference in adrenocortical function. The objectives of the present study were therefore to characterize the expression pattern of proteins involved in adrenal ACTH signaling and, including melanocortin type 2 receptor (MC2R), cAMP response element binding protein (CREB) and phosphorylated CREB (pCREB), steroidogenic acute regulatory protein (StAR), as well as that of the key enzymes involved in steroidogenesis in EHL and PIE pigs, in association with the plasma corticotrophin (ACTH) and cortisol levels. The plasma concentrations of the substrates for adrenal steroidogenesis, cholesterol and low-density lipoprotein (LDL) cholesterol, did not differ between breeds. Plasma concentration of ACTH and the adrenal contents of MC2R mRNA and protein were similar in two breeds of pigs, whereas the basal plasma concentrations of cortisol in EHL pigs were 1.5 folds higher than that in PIE pigs. The higher basal plasma cortisol levels in EHL pigs were found to be accompanied with the higher expression of ACTH post-receptor signaling components, cAMP, pCREB and StAR, as well as the higher expression of cholesterol side-chain cleavage cytochrome P450 (P450scc), 17alpha-hydroxylase cytochrome P450 (P450(17alpha)), 21-hydroxylase cytochrome P450 (P450c21) and 11beta-hydroxylase cytochrome P450 (P450(11beta)). These results indicated that the enhanced cAMP/PKA/pCREB-signaling system and augmented expression of StAR and steroidogenic enzymes are major attributes to the higher basal plasma cortisol concentrations in pigs.  相似文献   

12.
The steroidogenic acute regulatory protein (StAR) is essential for the regulated production of steroid hormones, mediating the translocation of intracellular cholesterol to the inner mitochondrial membrane where steroidogenesis begins. Steroidogenic cells lacking StAR have impaired steroidogenesis and progressively accumulate lipid, ultimately causing cytopathic changes and deterioration of steroidogenic capacity. Developmental studies of StAR knockout (KO) mice have correlated gonadal lipid deposits with puberty, suggesting that trophic hormones contribute to this lipid accumulation. To delineate the role of gonadotropins in this process, we examined double mutant mice deficient in both StAR and gonadotropins [StAR KO/hpg (hypogonadal)]. Lipid accumulation was ameliorated considerably in StAR KO/hpg mice but was restored by treatment with exogenous gonadotropins, directly linking trophic hormones with gonadal lipid accumulation. To define the relative roles of exogenous vs. endogenous cholesterol in the lipid accumulation, we also examined mice lacking both StAR and apolipoprotein A-I (StAR KO/Apo A-I KO). Steroidogenic tissues of StAR KO/Apo A-I KO mice had markedly decreased lipid deposits, supporting the predominant role of high-density lipoprotein-derived cholesterol in the lipid accumulation caused by StAR deficiency. Finally, we used electron microscopy to compare mitochondrial ultrastructure in StAR KO and cholesterol side-chain cleavage enzyme (Cyp11a1) KO mice; despite comparable lipid accumulation within adrenocortical cells, the effects of StAR deficiency and Cyp11a1 deficiency on mitochondrial ultrastructure were markedly different. These findings extend our understanding of steroidogenic cell dysfunction in StAR KO mice and highlight key roles of trophic hormones and high-density lipoprotein-derived cholesterol in lipid deposits within StAR-deficient steroidogenic cells.  相似文献   

13.
14.
The present in vitro experiment was designed to test whether 48 h of pretreatment with glucocorticoids, cortisol, or dexamethasone (DEX), would affect basal and corticotrophin (ACTH) stimulated (24 h) cortisol secretion from primary cultures of pig adrenocortical cells. Cells were divided into six groups: control pretreatment with or without ACTH challenge, cortisol pretreatment with or without ACTH challenge, and DEX pretreatment with or without ACTH. The culture medium and cells were collected at the end of treatment. Cortisol concentration in medium was measured by radioimmunoassay, and protein content of glucocorticoid receptor (GR) and key regulatory factors for steroidogenesis, including melanocortin type 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage cytochrome P450 (P450scc), were detected by Western blot analysis. The results showed that glucocorticoid pretreatment did not affect cortisol secretion under basal condition without ACTH challenge, but significantly enhanced ACTH-stimulated cortisol secretion. Furthermore, the protein content of GR, MC2R, StAR, and P450scc was all increased in groups pretreated with glucocorticoids. These results indicate that adrenocortical cells pretreated with glucocorticoids display higher steroidogenic capacity under ACTH challenge, through the upregulation of GR and other steroidogenic regulatory factors.  相似文献   

15.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

16.
Adiponectin plays a central role as an antidiabetic and antiatherogenic adipokine. AdipoR1 and AdipoR2 serve as receptors for adiponectin in vitro, and their reduction in obesity seems to be correlated with reduced adiponectin sensitivity. Here we show that adenovirus-mediated expression of AdipoR1 and R2 in the liver of Lepr(-/-) mice increased AMP-activated protein kinase (AMPK) activation and peroxisome proliferator-activated receptor (PPAR)-alpha signaling pathways, respectively. Activation of AMPK reduced gluconeogenesis, whereas expression of the receptors in both cases increased fatty acid oxidation and lead to an amelioration of diabetes. Alternatively, targeted disruption of AdipoR1 resulted in the abrogation of adiponectin-induced AMPK activation, whereas that of AdipoR2 resulted in decreased activity of PPAR-alpha signaling pathways. Simultaneous disruption of both AdipoR1 and R2 abolished adiponectin binding and actions, resulting in increased tissue triglyceride content, inflammation and oxidative stress, and thus leading to insulin resistance and marked glucose intolerance. Therefore, AdipoR1 and R2 serve as the predominant receptors for adiponectin in vivo and play important roles in the regulation of glucose and lipid metabolism, inflammation and oxidative stress in vivo.  相似文献   

17.
Adrenal glucocorticoid synthesis is stimulated by ACTH or its nitrophenylsulphenyl derivative, NPS-ACTH. Acute stimulation of steroid hormone biosynthesis is highly dependent on the expression of steroidogenic acute regulatory (StAR) protein. To determine the regulatory mechanism of StAR expression in bovine fasciculata/reticularis cells, we analyzed the second messenger systems involved in StAR protein expression using cultured cells activated by ACTH and NPS-ACTH. We concluded that cAMP is not the essential second messenger for StAR protein expression, since NPS-ACTH activated StAR protein expression more than ACTH without increase in cellular cAMP. A 15-lipoxygenase metabolite(s) of arachidonic acid stimulated steroidogenesis without increase in StAR protein expression, since AA-861, a lipoxygenase inhibitor, inhibited steroidogenesis without affecting StAR protein expression. Stimulation of StAR protein expression and the corresponding increase in the steroidogenesis were inhibited by nicardipine in cells treated with ACTH or NPS-ACTH. These data indicate that the dominant second messenger for the stimulation of StAR protein expression is Ca2+. Calmodulin-dependent kinase II inhibitors KN-93 and KN-62 suppressed steroidogenic activity without affecting StAR expression. The protein kinase C inhibitor Ro 31-8220 did not show any effects on StAR expression and steroidogenesis. Calmodulin-dependent kinase II and protein kinase C can therefore be concluded not to be involved in StAR protein expression in bovine cells.  相似文献   

18.
Lindane, the gamma isomer of hexachlorocyclohexane (HCH), is one of the oldest synthetic pesticides still in use worldwide. Numerous reports have shown that this pesticide adversely affects reproductive function in animals. Although the pathogenesis of reproductive dysfunction is not yet fully understood, recent reports indicate that lindane can directly inhibit adrenal and gonadal steroidogenesis. Because Leydig cells play a pivotal role in male reproductive function through the production of testosterone, the mouse MA-10 Leydig tumor cell line was used to assess the potential effects of gamma-HCH and its isomers, alpha-HCH and delta-HCH, on steroid production, steroidogenic enzyme expression and activity, and steroidogenic acute regulatory (StAR) protein expression. StAR mediates the rate-limiting and acutely regulated step in hormone-stimulated steroidogenesis, the intramitochondrial transfer of cholesterol to the P450(scc) enzyme. Our studies demonstrate that alpha-, delta-, and gamma-HCH inhibited dibutyryl ([Bu](2)) cAMP-stimulated progesterone production in MA-10 cells in a dosage-dependent manner without affecting general protein synthesis; and protein kinase A or steroidogenic enzyme expression, activity, or both. In contrast, each of these isomers dramatically reduced (Bu)(2)cAMP-stimulated StAR protein levels. Therefore, our results are consistent with the hypothesis that alpha-, delta-, and gamma-HCH inhibited steroidogenesis by reducing StAR protein expression, an action that may contribute to the pathogenesis of lindane-induced reproductive dysfunction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号