首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the γ-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80 kDa intracellular domain (4ICD), which associates with chaperone proteins such as YAP (Yes-associated protein) and translocates to the nucleus to regulate gene expression. We hypothesized that PSEN-1 and YAP have a development-specific expression in fetal type II cells and are important for ErbB4 signaling in surfactant production. In primary fetal mouse E16, E17, and E18 type II cells, PSEN-1 and YAP expression increased at E17 and E18 over E16. Subcellular fractionation showed a strong cytosolic and a weaker membrane location of both PSEN-1 and YAP. This was enhanced by NRG stimulation. Co-immunoprecipitations showed ErbB4 associated separately with PSEN-1 and with YAP. Their association, phosphorylation, and co-localization were induced by NRG. Confocal immunofluorescence and nuclear fractionation confirmed these associations in a time-dependent manner after NRG stimulation. Primary ErbB4-deleted E17 type II cells were transfected with a mutant ErbB4 lacking the γ-secretase binding site. When compared to transfection with wild-type ErbB4, the stimulatory effect of NRG on surfactant protein mRNA expression was lost. We conclude that PSEN-1 and YAP have crucial roles in ErbB4 signal transduction during type II cell maturation.  相似文献   

3.
4.
5.
6.
7.
Neuregulin is an important growth factor in fetal surfactant synthesis, and downregulation of its receptor, ErbB4, impairs fetal surfactant synthesis. We hypothesized that pulmonary ErbB4 deletion will affect the developing lung leading to an abnormal postnatal lung function. ErbB4-deleted lungs of 11- to 14-wk-old adult HER4heart mice, rescued from their lethal cardiac defects, were studied for the effect on lung function, alveolarization, and the surfactant system. ErbB4 deletion impairs lung function and structure in HER4heart mice resulting in a hyperreactive airway system and alveolar simplification, as seen in preterm infants with bronchopulmonary dysplasia. It also leads to a downregulation of surfactant protein D expression and an underlying chronic inflammation in these lungs. Our findings suggest that this animal model could be used to further study the pathogenesis of bronchopulmonary dysplasia and might help design protective interventions.  相似文献   

8.
Expression of the ErbB4 tyrosine kinase is elevated in colonic epithelial cells during inflammatory bowel disease, whereas ErbB4 overexpression in cultured colonocytes blocks TNF-induced apoptosis in a ligand-dependent manner. Together, these observations suggest that ErbB4 induction may be a protective response. However, the effects of ErbB4 signaling in the colonic epithelium in vivo are not known. Furthermore, previous work on ErbB4 used ligands shared with other receptors, raising the question of whether the observed responses are explicitly due to ErbB4. In this study, we used the ErbB4-specific ligand neuregulin-4 (NRG4) to activate ErbB4 and define its role in colonocyte biology. NRG4 treatment, either in cultured cells or in mice, blocked colonic epithelial apoptosis induced by TNF and IFN-γ. It was also protective in a murine experimental colitis model. NRG4 stimulated phosphorylation of ErbB4 but not other ErbB receptors, indicating that this is a specific response. Furthermore, in contrast to related ligands, NRG4 enhanced cell survival but not proliferation or migration, and stimulated phosphorylation of the anti-apoptotic mediator Akt but not ERK MAPK. Pharmacological inhibition of PI3K/Akt signaling reversed the anti-apoptotic effects of NRG4, confirming the role of this cascade in NRG4-induced cell survival. With regard to the potential clinical importance of this pathway, NRG4 expression was decreased in human inflammatory bowel disease samples and mouse models of colitis, suggesting that activation of ErbB4 is altered in disease. Thus, exogenous NRG4 may be beneficial for disorders in which epithelial apoptosis is part of the pathology.  相似文献   

9.
10.
Neuregulins (NRG) belong to the EGF family of growth factors, which are ligands of the ErbB receptors. Their expression in the adult heart is essential, especially when the heart is submitted to cardiotoxic stress such as that produced by anthracyclines. It is considered that ErbB4 is the only NRG receptor expressed by the adult heart. Upon binding, ErbB4 may dimerize with ErbB2 to generate signals inside cells. However, here we show the presence of ErbB3 in the mouse heart from birth to adulthood by Western blotting and real‐time RT‐PCR. The expression level of ErbB3 mRNA was lower than that of ErbB2 or ErbB4, but was more stable throughout postnatal development. In isolated heart myocytes, ErbB3 localized to the Z‐lines similarly to ErbB1. Perfusion of isolated hearts with NRG‐1β induced phosphorylation of ErbB3, as well as ErbB2 and ErbB4. In adult mice, both ErbB2 and ErbB3, but not ErbB1 or ErbB4, were rapidly down‐regulated upon the induction of heart hypertrophy. In conclusion, our results demonstrate that ErbB3, in addition to ErbB4, is a receptor for neuregulin‐1β in the adult mouse heart. J. Cell. Physiol. 226: 450–455, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Neuregulin 1 (NRG1) is a trophic factor that is thought to have important roles in the regulating brain circuitry. Recent studies suggest that NRG1 regulates synaptic transmission, although the precise mechanisms remain unknown. Here we report that NRG1 influences glutamate uptake by increasing the protein level of excitatory amino acid carrier (EAAC1). Our data indicate that NRG1 induced the up-regulation of EAAC1 in primary cortical neurons with an increase in glutamate uptake. These in vitro results were corroborated in the prefrontal cortex (PFC) of mice given NRG1. The stimulatory effect of NRG1 was blocked by inhibition of the NRG1 receptor ErbB4. The suppressed expression of ErbB4 by siRNA led to a decrease in the expression of EAAC1. In addition, the ablation of ErbB4 in parvalbumin (PV)-positive neurons in PV-ErbB4−/− mice suppressed EAAC1 expression. Taken together, our results show that NRG1 signaling through ErbB4 modulates EAAC1. These findings link proposed effectors in schizophrenia: NRG1/ErbB4 signaling perturbation, EAAC1 deficit, and neurotransmission dysfunction.  相似文献   

12.
Fhl1 (Four and a Half LIM domain 1) regulates muscle growth and development. In addition, skeletal myoblast growth is significantly affected by gender differences, implicating estrogen in the regulation of muscle development. We sought to determine if estrogen influences Fhl1 gene expression levels in rat L6GNR4 myoblastocytes that express the estrogen receptor β (ERβ), while luciferase assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) assay were employed to confirm the interaction between ERβ and Fhl1. Treatment of L6GNR4 cells with physiological levels of 17β-estradiol (E2) results in markedly decreased endogenous Fhl1 expression. Tamoxifen, an ER antagonist, partially reverses E2-mediated Fhl1 down-regulation in L6GNR4 cells. Furthermore, luciferase assay and EMSA identified a novel promoter region of Fhl1 that directly interacts with ERβ. ChIP of the ERβ-Fhl1 promoter complex from L6GNR4 cells confirmed that endogenous ERβ interacts with this region. These data indicate that E2 down-regulates Fhl1 expression through its binding to the ERβ. This is the first report of a small molecule that can affect Fhl1 expression. E2 may therefore be useful in developing new strategies for regulating Fhl1 expression and understanding the influence of estrogen on muscle growth and development.  相似文献   

13.
14.
15.
The mechanisms by which receptor tyrosine kinases (RTKs) utilize intracellular signaling pathways to direct gene expression and cellular response remain unclear. A current question is whether different RTKs within a single cell target similar or different sets of genes. In this study we have used the ErbB receptor network to explore the relationship between RTK activation and gene expression. We profiled growth factor-stimulated signaling pathway usage and broad gene expression patterns in two human mammary tumor cell lines expressing different complements of ErbB receptors. Although the growth factors epidermal growth factor (EGF) and neuregulin (NRG) 1 similarly stimulated Erk1/2 in MDA-MB-361 cells, EGF acting through an EGF receptor/ErbB2 heterodimer preferentially stimulated protein kinase C, and NRG1beta acting through an ErbB2/ErbB3 heterodimer preferentially stimulated Akt. The two growth factors regulated partially overlapping yet distinct sets of genes in these cells. In MDA-MB-453 cells, NRG1beta acting through an ErbB2/ErbB3 heterodimer stimulated prolonged signaling of all pathways examined relative to NRG2beta acting through the same heterodimeric receptor species. Surprisingly, NRG1beta and NRG2beta also regulated partially overlapping but distinct sets of genes in these cells. These results demonstrate that the activation of different RTKs, or activation of the same RTKs with different ligands, can lead to distinct profiles of gene regulation within a single cell type. Our observations also suggest that the identity and kinetics of signaling pathway usage by RTKs may play a role in the selection of regulated genes.  相似文献   

16.
Pulmonary ErbB4 deletion leads to a delay in fetal lung development, alveolar simplification, and lung function disturbances in adult mice. We generated a model of intrauterine infection in ErbB4 transgenic mice to study the additive effects of antenatal LPS administration and ErbB4 deletion during fetal lung development. Pregnant mice were treated intra-amniotically with an LPS dose of 4 μg at E17 of gestation. Lungs were analyzed 24 h later. A significant influx of inflammatory cells was seen in all LPS-treated lungs. In heterozygote control lungs, LPS treatment resulted in a delay of lung morphogenesis characterized by a significant increase in the fraction of mesenchyme, a decrease in gas exchange area, and disorganization of elastic fibers. Surfactant protein (Sftp)b and Sftpc were upregulated, but mRNA of Sftpb and Sftpc was downregulated compared with non-LPS-treated controls. The mRNA of Sftpa1 and Sftpd was upregulated. In ErbB4-deleted lungs, the LPS effects were more pronounced, resulting in a further delay in morphological development, a more pronounced inflammation in the parenchyma, and a significant higher increase in all Sftp. The effect on Sftpb and Sftpc mRNA was somewhat different, resulting in a significant increase. These results imply a major role of ErbB4 in LPS-induced signaling in structural and functional lung development.  相似文献   

17.
18.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

19.
Estrogen replacement therapy could play a role in the reduction of injury associated with cerebral ischemia in vivo, which could be, at least partially, a consequence of estrogen influence of glutamate buffering by astrocytes during hypoxia/ischemia. Estrogen exerts biological effects through interaction with its two receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are both expressed in astrocytes. This study explored effects of hypoxia and glucose deprivation (HGD), alone or followed by 1 h recovery, on ERα and ERβ expression in primary rat astrocyte cultures following 1 h exposure to: a) 5 % CO(2) in air (control group-CG); b) 2 % O(2)/5 % CO(2) in N(2) with glucose deprivation (HGD group-HGDG); or c) the HGDG protocol followed by 1 h CG protocol (recovery group-RG). ERα mRNA expression decreased in HGDG. At the protein level, full-length ERα (67 kDa) and three ERα-immunoreactive protein bands (63, 60 and 52 kDa) were detected. A significant decrease in the 52 kDa band was seen in HGDG, while a significant decrease in expression of the full length ERα was seen in the RG. ERβ mRNA and protein expression (a 54 kDa single band) did not change. The observed decrease in ERα protein may limit estrogen-mediated signalling in astrocytes during hypoxia and recovery.  相似文献   

20.
Identification of factors that direct embryonic stem (ES) cell (ESC) differentiation into functional cardiomyocytes is essential for successful use of ESC-based therapy for cardiac repair. Neuregulin-1 (NRG1) and microRNA play important roles in the cardiac differentiation of ESCs. Understanding how NRG1 regulates microRNA will provide new mechanistic insights into the role of NRG1 on ESCs. It may also lead to the discovery of novel microRNAs that are important for ESC cardiac differentiation. The objective of this study was to assess the microRNA expression profile during NRG1-induced ESC cardiac differentiation. Murine ESCs were incubated with a recombinant NRG1β or an inhibitor of ErbB2 or ErbB4 during hanging drop-induced cardiac differentiation. The expression of cardiac-specific markers and microRNAs was analyzed by RT-PCR and microRNA array, respectively. We found that the expression of NRG1 and the ErbB receptors was increased during hanging drop-induced cardiac differentiation of ESCs. NRG1 stimulation during a specific developmental window enhanced, while inhibition of the ErbB2 or ErbB4 receptor inhibited, cardiac differentiation of ESCs. NRG1 increased the expression of mmu-miR-296-3p and mmu-miR-200c*, and decreased mmu-miR-465b-5p. Inhibition of mmu-miR-296-3p or mmu-miR-200c* decreased, while inhibition of mmu-miR-465-5p increased, the differentiation of ESCs into the cardiac lineage. This is the first report demonstrating that microRNAs are differentially regulated by NRG1-ErbB signaling during cardiac differentiation of ESCs. This study has also identified new microRNAs that are important for ESC cardiac differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号