首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders.  相似文献   

2.
3.
内质网应激激活的未折叠蛋白反应(Unfolded protein response,UPR)途径在酿酒酵母和哺乳动物细胞中是非常保守的。内质网(Endoplasmic reticulum,ER)是蛋白质合成、折叠和修饰的细胞器,也是贮存钙的主要场所之一。酵母细胞内质网钙平衡与UPR的作用是相互的;两个MAPK途径——HOG途径和CWI途径都是细胞应答内质网应激压力时生存所必需的;重金属镉离子能够激活UPR途径,它通过激活钙离子通道Cch1/Mid1进入细胞影响钙离子的功能。本文结合最新研究进展对酿酒酵母细胞中的两个MAPK途径、镉离子和钙离子稳态与内质网应激激活的UPR途径之间相互关系进行综述。  相似文献   

4.
Perturbations in endoplasmic reticulum (ER) homeostasis, including depletion of Ca2 + or altered redox status, induce ER stress due to protein accumulation, misfolding and oxidation. This activates the unfolded protein response (UPR) to re-establish the balance between ER protein folding capacity and protein load, resulting in cell survival or, following chronic ER stress, promotes cell death. The mechanisms for the transition between adaptation to ER stress and ER stress-induced cell death are still being understood. However, the identification of numerous points of cross-talk between the UPR and mitogen-activated protein kinase (MAPK) signalling pathways may contribute to our understanding of the consequences of ER stress. Indeed, the MAPK signalling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses. In this article, we review UPR signalling and the activation of MAPK signalling pathways in response to ER stress. In addition, we highlight components of the UPR that are modulated in response to MAPK signalling and the consequences of this cross-talk. We also describe several diseases, including cancer, type II diabetes and retinal degeneration, where activation of the UPR and MAPK signalling contribute to disease progression and highlight potential avenues for therapeutic intervention. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

5.
The endoplasmic reticulum (ER) is responsible for many housekeeping functions within the cell and is an important site for pathways that regulates its state of homeostasis. When cellular states perturb ER functions, a phenomenon termed “ER stress” activates a number of pathways to counteract the associated damages; these pathways are together called the unfolded protein response (UPR). The UPR has a dualistic function; it exists to alleviate damage associated with ER stress, however, if this is not possible, then it signals for cell death through apoptosis. Cancer cells are shown to be very resilient under extreme environmental stress and an increasing number of studies have indicated that this may be largely due to an altered state of the UPR. The role of ER stress and the UPR in cancer is still not clear, however many components are involved and may prove to be promising targets in future anti-cancer therapy. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

6.
7.
内质网是分泌型蛋白和膜蛋白折叠及翻译后修饰的主要场所.病毒感染所引起的宿主细胞内环境的改变可使细胞或病毒的未折叠和/或错误折叠蛋白在内质网中大量聚集,使内质网处于生理功能紊乱的应激状态.为了缓解这种应激压力,细胞会启动未折叠蛋白反应(UPR),并通过一系列分子的信号转导维持内质网稳态;同时病毒也会通过对UPR的精密调控...  相似文献   

8.
Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER calcium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under chronic stress. The global coordination between UPR signaling and energetic demands takes place at mitochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.  相似文献   

9.
Apoptosis is essential for maintenance of tissue homeostasis and its deregulation underlies many disease conditions. The BCL-2 family of proteins is a group of evolutionarily conserved regulators of cell death, comprising both anti- and pro-apoptotic members, which operate at the mitochondrial membrane to control caspase activation. Different BCL-2-related proteins are also located in multiprotein complexes at the endoplasmic reticulum (ER), which are involved in the control of diverse cellular processes, including calcium homeostasis, autophagy, the unfolded protein response and ER morphogenesis. Here, we describe the emerging concept that BCL-2-related proteins have alternative functions beyond apoptosis to control the essential functions of the cell.  相似文献   

10.
11.
内质网是蛋白质合成与折叠、维持Ca2+动态平衡及合成脂类和固醇的场所。遗传或环境损伤引起内质网功能紊乱导致内质网应激,激活未折叠蛋白反应。未折叠蛋白反应是一种细胞自我保护性措施,但是内质网应激过强或持续时间过久可引起细胞凋亡。因此,内质网应激与众多人类疾病的发生发展密切相关。最近研究证明,癌症、炎症性疾病、代谢性疾病、骨质疏松症及神经退行性疾病等有内质网应激信号传递参与。然而内质网应激作为一个有效靶点参与各种疾病发挥作用的功能和机制仍然有待进一步研究。在近年来发表的文献基础上对内质网应激与疾病的关系,以及其可能的作用机制进行综述。  相似文献   

12.
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-κB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6M241T and US2, but not the soluble degradation substrate α1-antitrypsin nullHK. These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.  相似文献   

13.
《Autophagy》2013,9(4):622-623
Eukaryotic cells have developed sophisticated strategies to contend with environmental stresses faced in their lifetime. Endoplasmic reticulum (ER) stress occurs when the accumulation of unfolded proteins within the ER exceeds the folding capacity of ER chaperones. ER stress responses have been well characterized in animals and yeast, and autophagy has been suggested to play an important role in recovery from ER stress. In plants, the unfolded protein response signaling pathways have been studied, but changes in ER morphology and ER homeostasis during ER stress have not been analyzed previously. Autophagy has been reported to function in tolerance of several stress conditions in plants, including nutrient deprivation, salt and drought stresses, oxidative stress, and pathogen infection. However, whether autophagy also functions during ER stress has not been investigated. The goal of our study was to elucidate the role and regulation of autophagy during ER stress in Arabidopsis thaliana.  相似文献   

14.
胡雨荣  陈勇  刘勇 《生理学报》2021,(1):115-125
在真核细胞中,内质网是蛋白合成、加工及质量监控的关键细胞器,也是Ca2+储存及脂质合成的重要场所.细胞通过未折叠蛋白响应(unfolded protein response,UPR)感应外界不同刺激引发的内质网应激,在维持细胞功能稳态中发挥至关重要的作用.在哺乳动物中,三个位于内质网的跨膜蛋白——肌醇依赖酶la(ino...  相似文献   

15.
Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.  相似文献   

16.
未折叠蛋白在内质网(endoplasmic reticulum,ER)腔中累积造成ER应激,此时细胞启动未折叠蛋白响应(unfolded protein response,UPR)以恢复蛋白质稳态。目前已知有三种UPR感受器,即IRE1、PERK和ATF6,它们均为ER跨膜蛋白,在ER应激时被激活并启动下游UPR信号通路。虽然UPR感受器最早是在研究细胞如何应对ER应激时发现的,但它们如何感知ER应激至今未得到完满的回答。随着研究的深入,人们发现UPR的功能不仅限于维持蛋白质稳态,而UPR感受器也不是只对未折叠蛋白累积作出响应。本文对UPR的发现及其经典通路作一介绍,着重阐述目前已知的UPR感受器的激活机制,并就UPR和ER应激关系以及该领域存在的问题进行讨论。  相似文献   

17.
Perturbed neuronal proteostasis is a salient feature shared by both aging and protein misfolding disorders. The proteostasis network controls the health of the proteome by integrating pathways involved in protein synthesis, folding, trafficking, secretion, and their degradation. A reduction in the buffering capacity of the proteostasis network during aging may increase the risk to undergo neurodegeneration by enhancing the accumulation of misfolded proteins. As almost one‐third of the proteome is synthetized at the endoplasmic reticulum (ER), maintenance of its proper function is fundamental to sustain neuronal function. In fact, ER stress is a common feature of most neurodegenerative diseases. The unfolded protein response (UPR) operates as central player to maintain ER homeostasis or the induction of cell death of chronically damaged cells. Here, we discuss recent evidence placing ER stress as a driver of brain aging, and the emerging impact of neuronal UPR in controlling global proteostasis at the whole organismal level. Finally, we discuss possible therapeutic interventions to improve proteostasis and prevent pathological brain aging.  相似文献   

18.
在真核细胞中,内质网是蛋白质合成、折叠、加工及其质量监控的重要场所。当内质网难以承担蛋白折叠的高负荷时则引发内质网应激(ER stress),激活细胞的未折叠蛋白响应(unfoldedprotein response,UPR)。细胞通过内质网跨膜蛋白ATF6、PERK和IRE1介导的三条极为关键的UPR信号通路,调控下游相关基因的表达,以增强内质网对蛋白折叠的处理能力。因此,UPR通路在细胞的稳态平衡中具有举足轻重的作用,而这一动态过程的调控对于维持机体的正常生理功能至关重要。近来大量研究表明,在哺乳动物中内质网应激与机体的营养感应和糖脂代谢的调控过程密切相关。在肝脏、脂肪、胰岛以及下丘脑等不同的组织器官中,内质网应激均影响代谢通路的调节机制,因此在糖脂代谢紊乱的发生发展中扮演重要的角色。综上所述,进一步深入了解内质网应激引发代谢异常的生理学机制,可以为肥胖、脂肪肝及2型糖尿病等相关代谢性疾病的防治提供新的潜在药物靶点和重要的理论线索。  相似文献   

19.
Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR), a highly conserved signaling cascade that functions to alleviate stress and promote cell survival. If, however, the cell is unable to adapt and restore homeostasis, then the UPR activates pathways that promote apoptotic cell death. The molecular mechanisms governing the critical transition from adaptation and survival to initiation of apoptosis remain poorly understood. We aim to determine the role of hepatic Xbp1, a key mediator of the UPR, in controlling the adaptive response to ER stress in the liver. Liver-specific Xbp1 knockout mice (Xbp1LKO) and Xbp1fl/fl control mice were subjected to varying levels and durations of pharmacologic ER stress. Xbp1LKO and Xbp1fl/fl mice showed robust and equal activation of the UPR acutely after induction of ER stress. By 24 h, Xbp1fl/fl controls showed complete resolution of UPR activation and no liver injury, indicating successful adaptation to the stress. Conversely, Xbp1LKO mice showed ongoing UPR activation associated with progressive liver injury, apoptosis, and, ultimately, fibrosis by day 7 after induction of ER stress. These data indicate that hepatic XBP1 controls the adaptive response of the UPR and is critical to restoring homeostasis in the liver in response to ER stress.  相似文献   

20.
Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号