首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH2- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C). Immunoprecipitation confirmed that C-XIAP-C retained the ability to interact with Smac and impaired extrinsically and intrinsically activated apoptosis in response to tumour necrosis factor-related apoptosis-inducing ligand/cycloheximide and staurosporine. In C-XIAP-C-expressing cells, cytochrome c release from mitochondria proceeded normally, whereas Smac release was significantly prolonged and incomplete. In addition, physiological expression of native XIAP prolonged or limited Smac release in HCT-116 colon cancer cells and primary mouse cortical neurons. The Smac-binding capacity of XIAP, but not caspase inhibition, was central for mitochondrial Smac retention, as evidenced in experiments using XIAP mutants that cannot bind to Smac or effector caspases. Similarly, the release of a Smac mutant that cannot bind to XIAP was not impaired by C-XIAP-C expression. Full Smac release could however be provoked by rapid cytosolic C-XIAP-C depletion upon digitonin-induced plasma membrane permeabilization. Our findings suggest that although mitochondria may already contain pores sufficient for cytochrome c release, elevated amounts of XIAP can selectively impair and limit the release of Smac.  相似文献   

2.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

3.
In this study, the release of mitochondrial proapoptotic intermembrane space proteins induced by exogenous C2-ceramide in human colon carcinoma (HT-29) cell line was investigated. HT-29 cells were treated with 12.5, 25 and 50 μmol/L C2-ceramide in vitro. Flow cytometer was used to detect the mitochondrial membrane potential (△Ψm). Subcellular fractions were extracted by Mitochondrial/Cytosol Fractionation Kit after C2-ceramide treatment for 24 h. SDS-PAGE was used to determine the level of cytochrome c (Cyt c), high temperature requirement A2 (HtrA2) and second mitochondrial-derived activator of caspases (Smac) released from mitochondria, the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-3 for 24 h. The results showed that △Ψm began to decrease from 6 h after 25 and 50 μmol/L C2-ceramide treatment (P<0.05) and cyclosporin A (CsA) could inhibit the collapse of △Ψm through regulating mitochondrial membrane permeability transition pore. There was no effect of C2-ceramide on the expression of Cyt c, HtrA2 and Smac in the total levels. 12.5, 25 and 50 μmol/L C2-ceramide could induce Cyt c, HtrA2 and Smac to release from mitochondria to cytosol and down-regulate the expression of XIAP (P<0.05). Also there was expression of cleaved caspase-3 with C2-ceramide treatment. After the treatment with caspase inhibitor, C2-ceramide still induced the release of Cyt c and HtrA2, but Smac did not. Therefore, C2-ceramide could induce apoptosis of HT-29 cells through the mitochondria pathway. The release of Cyt c, HtrA2 and Smac from mitochondria did not occur via the same mechanism, the release of Cyt c and HtrA2 was caspase-independent and the release of Smac was caspase-dependent.  相似文献   

4.
In this study, the release of mitochondrial proapoptotic intermembrane space proteins induced by ex-ogenous C2-ceramide in human colon carcinoma (HT-29) cell line was investigated. HT-29 cells were treated with 12.5, 25 and 50 μmol/L C2-ceramide in vitro. Flow cytometer was used to detect the mito-chondrial membrane potential (ΔΨm). Subcellular fractions were extracted by Mitochondrial/Cytosol Fractionation Kit after C2-ceramide treatment for 24 h. SDS-PAGE was used to determine the level of cytochrome c (Cyt c), high temperature requirement A2 (HtrA2) and second mitochondrial-derived ac-tivator of caspases (Smac) released from mitochondria, the expression of X-linked inhibitor of apop-tosis protein (XIAP) and caspase-3 for 24 h. The results showed that ΔΨm began to decrease from 6 h after 25 and 50 μmol/L C2-ceramide treatment (P<0.05) and cyclosporin A (CsA) could inhibit the col-lapse of ΔΨm through regulating mitochondrial membrane permeability transition pore. There was no effect of C2-ceramide on the expression of Cyt c, HtrA2 and Smac in the total levels. 12.5, 25 and 50 μmol/L C2-ceramide could induce Cyt c, HtrA2 and Smac to release from mitochondria to cytosol and down-regulate the expression of XIAP (P<0.05). Also there was expression of cleaved caspase-3 with C2-ceramide treatment. After the treatment with caspase inhibitor, C2-ceramide still induced the release of Cyt c and HtrA2, but Smac did not. Therefore, C2-ceramide could induce apoptosis of HT-29 cells through the mitochondria pathway. The release of Cyt c, HtrA2 and Smac from mitochondria did not occur via the same mechanism, the release of Cyt c and HtrA2 was caspase-independent and the re-lease of Smac was caspase-dependent.  相似文献   

5.
Simone Fulda 《Mitochondrion》2013,13(3):195-198
Most anticancer therapies exert their action by triggering programmed cell death (apoptosis) in cancer cells. The mitochondrial pathway of apoptosis is initiated by mitochondrial outer membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome c or Smac from the mitochondrial intermembrane space into the cytosol. Mitochondrial outer membrane permeabilization is tightly controlled, for example by pro- and anti-apoptotic proteins of the Bcl-2 family. Recent evidence indicates that inhibition of the PI3K/Akt/mTOR pathway by small-molecule PI3K inhibitors primes cancer cells to mitochondrial apoptosis by tipping the balance towards pro-apoptotic Bcl-2 proteins, resulting in increased mitochondrial outer membrane permeabilization. Thus, mitochondrial apoptotic events play an important role in PI3K inhibitor-mediated sensitization for apoptosis.  相似文献   

6.
During apoptosis, a key event is the release of Smac/DIABLO (an inhibitor of XIAP) and cytochrome c (Cyt-c, an activator of caspase-9) from mitochondria to cytosol. It was not clear, however, whether the releasing mechanisms of these two proteins are the same. Using a combination of single living-cell analysis and immunostaining techniques, we investigated the dynamic process of Smac and Cyt-c release during UV-induced apoptosis in HeLa cells. We found that YFP-labeled Smac and GFP-labeled Cyt-c were released from mitochondria in the same time window, which coincided with the mitochondrial membrane potential depolarization. Furthermore, using immunostaining, we found that the endogenous Smac and Cyt-c were always released together within an individual cell. Finally, when cells were pre-treated with caspase inhibitor (z-VAD-fmk) to block caspase activation, the process of Smac release, like that of Cyt-c, was not affected. This was true for both YFP-labeled Smac and endogenous Smac. These results suggest that in HeLa cells, both Smac and Cyt-c are released from mitochondria during UV-induced apoptosis through the same permeability transition mechanism, which we believe is triggered by the aggregation of Bax in the outer mitochondrial membrane to form lipid-protein complex.  相似文献   

7.
To identify human proteins that bind to the Smac and caspase-9 binding pocket on the baculoviral inhibitor of apoptosis protein (IAP) repeat 3 (BIR3) domain of human XIAP, we used BIR3 as an affinity reagent, followed by elution with the BIR3 binding peptide AVPIA, microsequencing, and mass spectrometry. The mature serine protease Omi (also known as HtrA2) was identified as a mitochondrial direct BIR3-binding protein and a caspase activator. Like mature Smac (also known as Diablo), mature Omi contains a conserved IAP-binding motif (AVPS) at its N terminus, which is exposed after processing of its N-terminal mitochondrial targeting sequence upon import into the mitochondria. Mature Omi is released together with mature Smac from the mitochondria into the cytosol upon disruption of the outer mitochondrial membrane during apoptosis. Finally, mature Omi can induce apoptosis in human cells in a caspase-independent manner through its protease activity and in a caspase-dependent manner via its ability to disrupt caspase-IAP interaction. Our results provide clear evidence for the involvement of a mitochondrial serine protease in the apoptotic pathway, emphasizing the critical role of the mitochondria in cell death.  相似文献   

8.
During apoptosis, Smac (second mitochondria-derived activator of caspases)/DIABLO, an IAP (inhibitor of apoptosis protein)-binding protein, is released from mitochondria and potentiates apoptosis by relieving IAP inhibition of caspases. We demonstrate that exposure of MCF-7 cells to the death-inducing ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), results in rapid Smac release from mitochondria, which occurs before or in parallel with loss of cytochrome c. Smac release is inhibited by Bcl-2/Bcl-xL or by a pan-caspase inhibitor demonstrating that this event is caspase-dependent and modulated by Bcl-2 family members. Following release, Smac is rapidly degraded by the proteasome, an effect suppressed by co-treatment with a proteasome inhibitor. As the RING finger domain of XIAP possesses ubiquitin-protein ligase activity and XIAP binds tightly to mature Smac, an in vitro ubiquitination assay was performed which revealed that XIAP functions as a ubiquitin-protein ligase (E3) in the ubiquitination of Smac. Both the association of XIAP with Smac and the RING finger domain of XIAP are essential for ubiquitination, suggesting that the ubiquitin-protein ligase activity of XIAP may promote the rapid degradation of mitochondrial-released Smac. Thus, in addition to its well characterized role in inhibiting caspase activity, XIAP may also protect cells from inadvertent mitochondrial damage by targeting pro-apoptotic molecules for proteasomal degradation.  相似文献   

9.
Apoptosis is controlled by a signaling equilibrium between prosurvival and proapoptotic pathways, such that unwanted apoptosis is avoided, but when required it occurs rapidly and efficiently. Many apoptosis regulators display dual roles, depending upon whether a cell has received an apoptotic stimulus or not. Here, we identify a novel and unexpected function for X-linked inhibitor of apoptosis (XIAP) that occurs when apoptosis is triggered under physiological conditions. We show that in response to loss of survival signals provided by cell adhesion, endogenous XIAP translocates from the cytosol into a mitochondrial 400-kDa complex and that this occurs very early in the apoptosis process. Membrane-associated XIAP induces mitochondrial outer membrane permeabilization leading to cytochrome c and Smac release, which is dependent on Bax and Bak. Thus, although XIAP suppresses apoptosis in healthy cells, our data indicate that XIAP may contribute to it in response to a proapoptotic signal such as loss of extracellular matrix-dependent survival signaling. We suggest that, as with Bcl-2 family proteins, more diverse functions for XIAP exist than previously identified. Moreover, switching the function of proteins from anti- to proapoptotic forms may be a common theme in the efficient execution of cell death.  相似文献   

10.
During apoptosis, cytochrome c is released into the cytosol as the outer membrane of mitochondria becomes permeable, and this acts to trigger caspase activation. The consequences of this release for mitochondrial metabolism are unclear. Using single-cell analysis, we found that when caspase activity is inhibited, mitochondrial outer membrane permeabilization causes a rapid depolarization of mitochondrial transmembrane potential, which recovers to original levels over the next 30-60 min and is then maintained. After outer membrane permeabilization, mitochondria can use cytoplasmic cytochrome c to maintain mitochondrial transmembrane potential and ATP production. Furthermore, both cytochrome c release and apoptosis proceed normally in cells in which mitochondria have been uncoupled. These studies demonstrate that cytochrome c release does not affect the integrity of the mitochondrial inner membrane and that, in the absence of caspase activation, mitochondrial functions can be maintained after the release of cytochrome c.  相似文献   

11.
12.
Cleavage of Bid has been shown to promote apoptosis by inducing mitochondrial membrane permeabilization with the resultant release of apoptosis-inducing proteins from the intermembrane space into the cytosol. However, direct visualization of the Bid-induced release of various proteins from the highly compartmentalized intermembrane space and the changes in the mitochondrial metabolic machinery remain elusive. Using green fluorescent protein fusion proteins and immunostaining in individual permeabilized HepG2 cells, first we demonstrated that truncated Bid (15.5-kDa C-terminal fragment, tBid) evoked a rapid and essentially complete release of cytochrome c and Smac/DIABLO from every mitochondrion. To establish at a resolution of seconds the kinetics of tBid-induced cytochrome c and Smac/DIABLO release and depolarization, we monitored the mitochondrial membrane potential (DeltaPsi(m)) fluorimetrically in permeabilized cells and applied a rapid filtration method to obtain cytosolic fractions for Western blotting. We found that subnanomolar doses of tBid were sufficient to evoke cytochrome c release and mitochondrial depolarization, whereas full-length Bid was 100-fold less effective. Bcl-x(L) prevented tBid-induced cytochrome c release and depolarization. In response to 2.5 nm tBid, cytochrome c release started after a 10 s delay, displayed rapid progression, and was complete at 50-70 s. Release of Smac/DIABLO was synchronized with cytochrome c release, whereas the loss of DeltaPsi(m) lagged slightly behind cytochrome c release. Furthermore, tBid-induced cytochrome c release was insensitive to changes in substrate composition, but tBid-induced depolarization did not occur in the presence of extramitochondrial ATP supply. Thus, tBid-induced permeabilization of the outer membrane permits rapid release of cytochrome c and Smac/DIABLO from all domains of the intermembrane space. The tBid-induced loss of DeltaPsi(m) occurs after cytochrome c release and reflects impairment of oxidative metabolism.  相似文献   

13.
Mitochondrial fusion and division play important roles in the regulation of apoptosis. Mitochondrial fusion proteins attenuate apoptosis by inhibiting release of cytochrome c from mitochondria, in part by controlling cristae structures. Mitochondrial division promotes apoptosis by an unknown mechanism. We addressed how division proteins regulate apoptosis using inhibitors of mitochondrial division identified in a chemical screen. The most efficacious inhibitor, mdivi-1 (for mitochondrial division inhibitor) attenuates mitochondrial division in yeast and mammalian cells by selectively inhibiting the mitochondrial division dynamin. In cells, mdivi-1 retards apoptosis by inhibiting mitochondrial outer membrane permeabilization. In vitro, mdivi-1 potently blocks Bid-activated Bax/Bak-dependent cytochrome c release from mitochondria. These data indicate the mitochondrial division dynamin directly regulates mitochondrial outer membrane permeabilization independent of Drp1-mediated division. Our findings raise the interesting possibility that mdivi-1 represents a class of therapeutics for stroke, myocardial infarction, and neurodegenerative diseases.  相似文献   

14.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

15.
A key step in the initiation of apoptosis is the release from the mitochondrial intermembrane space of cytochrome c and other pro-apoptotic proteins such as Smac/DIABLO, Omi/HtrA2, apoptosis-inducing factor (AIF), and endonuclease G (EndoG). Discrepancies have arisen, however, as to whether all these proteins are released in different systems. Our results suggest that failure to observe cytochrome c release may be due to the use of different buffers because after permeabilization by caspase-8 cleaved human Bid (tBid), cytochrome c dissociation from mitochondria was highly dependent on ionic strength and required 50-80 mm KCl, NaCl, or LiCl. In addition, mitochondria isolated from apoptotic cells using low ionic strength buffer bound a greater proportion of endogenous cytochrome c. In contrast to cytochrome c, Smac/DIABLO and Omi/HtrA2 were released independent of ionic strength, and AIF and EndoG behaved as if they are exposed to the intermembrane space but tethered to or within the inner membrane. AIF and EndoG were also not released by active caspases, which suggests their involvement in apoptosis may be limited. In summary, whereas tBid permeabilizes the outer membrane to cytochrome c, Smac/DIABLO, and Omi/HtrA2, the release of cytochrome c during apoptosis will be underestimated unless sufficient ionic strength is maintained to overcome the electrostatic association of cytochrome c with membranes.  相似文献   

16.
Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).  相似文献   

17.
Omi/HtrA2 is a mitochondrial serine protease that is released into the cytosol during apoptosis and promotes cytochrome c (Cyt c)dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs) via its IAP-binding motif. The protease activity of Omi/HtrA2 also contributes to the progression of both apoptosis and caspase-independent cell death. In this study, we found that wild-type Omi/HtrA2 is more effective at caspase activation than a catalytically inactive mutant of Omi/HtrA2 in response to apoptotic stimuli, such as UV irradiation or tumor necrosis factor. Although similar levels of Omi/HtrA2 expression, XIAP-binding activity, and Omi/HtrA2 mitochondrial release were observed among cells transfected with catalytically inactive and wild-type Omi/HtrA2 protein, XIAP protein expression after UV irradiation was significantly reduced in cells transfected with wild-type Omi/HtrA2. Recombinant Omi/HtrA2 was observed to catalytically cleave IAPs and to inactivate XIAP in vitro, suggesting that the protease activity of Omi/HtrA2 might be responsible for its IAP-inhibiting activity. Extramitochondrial expression of Omi/HtrA2 indirectly induced permeabilization of the outer mitochondrial membrane and subsequent Cyt c-dependent caspase activation in HeLa cells. These results indicate that protease activity of Omi/HtrA2 promotes caspase activation through multiple pathways.  相似文献   

18.
Apoptosis plays a critical role for the development of a variety of cardiac diseases. Cardiomyocytes are enriched in mitochondria, while mitochondrial fission can regulate apoptosis. The molecular mechanism governing cardiomyocyte apoptosis remain to be fully elucidated. Our results showed that Smac/DIABLO is necessary for apoptosis in cardiomyocytes, and it is released from mitochondria into cytosol in response to apoptotic stimulation. Smac/DIABLO release is a consequence of mitochondrial fission mediated by dynamin-related protein-1 (Drp1). Upon release Smac/DIABLO binds to X-linked inhibitor of apoptosis protein (XIAP), resulting in the activation of caspase-9 and caspase-3. Their activation is a prerequisite for the initiation of apoptosis because the administration of z-LEHD-fmk and z-DQMD-fmk, two relatively specific inhibitors for caspase-9, and caspase-3, respectively, could significantly attenuate apoptosis. Smac/DIABLO release could not be blocked by these caspase inhibitors, indicating that it is an event upstream of caspase activation. ARC (apoptosis repressor with caspase recruitment domain), an abundantly expressed apoptotic repressor in cardiomyocytes, could inhibit mitochondrial fission and Smac/DIABLO release. Our data reveal that Smac/DIABLO is a target of ARC in counteracting apoptosis.  相似文献   

19.
We investigated the expression of XIAP (X chromosome-linked inhibitor of apoptosis protein) and Smac/DIABLO, a newly identified mitochondrial apoptogenig molecule in the hippocampus following transient global ischemia. Transient global ischemia produced by two-vessel occlusion triggers the delayed neuronal death of CA1 neurons in the hippocampus. We demonstrate that CA1 neuronal loss induced by ischemia (10 min) is preceded by a selective and marked elevation of catalytically active caspase-3 in these neurons, indicative of apoptosis. XIAP (X chromosome-linked inhibitor of apoptosis protein) is a member of the inhibitor of apoptosis (IAP) gene family that, in addition to suppressing cell death by inhibition of caspases, is involved in an increasing number of signalling cascades. The present study shows alterations in the levels of XIAP and of Smac/DIABLO (second mitochondrial activator of caspase) after cerebral ischemia. The protein levels of XIAP and the number of XIAP-positive cells were regulated by cerebral ischemia in a strictly time and region dependent manner. The largest change in XIAP-IR was observed in the CA1 sub field, which is the most vulnerable area of hippocampus. The mitochondrial expression level of Smac/DIABLO increased during reperfusion. Smac/DIABLO expression was associated with alteration of the XIAP levels and the appearance of activated form of caspase-3 within the hippocampus during reperfusion in spatial and temporal manners.  相似文献   

20.
Mitochondria play a central role in the initiation of apoptosis, which is regulated by various factors such as ATP synthesis, reactive oxygen species, redox status, and outer membrane permeabilization. Disruption of chicken thioredoxin 2 (Trx2), a mitochondrial redox-regulating protein, results in apoptosis in DT40 cells. To investigate the mechanism of this apoptosis, we prepared transfectants expressing control (DT40-TRX2-/-), human thioredoxin 2 (TRX2) (DT40-hTRX2), or redox-inactive TRX2 (DT40-hTRX2CS) in conditional Trx2-deficient DT40 cells containing a tetracycline-repressible Trx2 gene. Production of ATP was not significantly changed by down-regulation of Trx2 expression. The generation of reactive oxygen species was enhanced by the down-regulation of Trx2 expression in DT40-TRX2-/-. Unexpectedly, the change was blocked in both DT40-hTRX2 and DT40-hTRX2CS cells. The down-regulation of Trx2 expression caused the release of cytochrome c and apoptosis-inducing factor on day 3, and apoptosis on day 5. These changes were also suppressed in both DT40-hTRX2 and DT40-hTRX2CS cells, suggesting that TRX2 regulates mitochondrial outer membrane permeabilization and apoptosis by redox-active site cysteine-independent mechanisms. The down-regulation of Trx2 expression caused a decrease in the protein level of Bcl-xL on day 3, whereas the protein level of Bcl-2 did not change until day 4, and the mRNA level of Bcl-xL was unchanged. The decrease in Bcl-xL was not blocked by a caspase 3 inhibitor but blocked in both DT40-hTRX2 and DT40-hTRX2CS. These findings indicate a link between the redox active site cysteine-independent action of TRX2 and the level of Bcl-xL in the regulation of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号