首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cytoplasmic hsp70s like yeast Ssa4p shuttle between nucleus and cytoplasm under normal growth conditions but accumulate in nuclei upon stress. This nuclear accumulation is only transient, and Ssa4p relocates to the cytoplasm when cells recover. We show here that Ssa4p nuclear export is independent of Xpol/Crm1 and identify the importin-beta family member Msn5p/Kap142p as the exporter for Ssa4p. In growing cells and in vitro, Msn5p and Ssa4p generate genuine export complexes that require Ran/Gsp1p-GTP. Furthermore, nucleoporin Nup82p, which plays a role in Msn5p-mediated transport, is necessary for efficient export of Ssa4p. In living cells, stress not only regulates Ssa4p localization, but also controls the distribution of Msn5p. Msn5p is concentrated in nuclei of unstressed cells, but appears in the cytoplasm upon exposure to ethanol, heat, starvation or severe oxidative stress. In addition, growth on non-fermentable carbon sources relocates a portion of Msn5p to the cytoplasm and leads to a partial nuclear accumulation of Ssa4p. Taken together, growth and stress conditions that localize the transporter Msn5p to the cytoplasm also induce the nuclear accumulation of its cargo Ssa4p.  相似文献   

5.
6.
7.
8.
U Stochaj  R Rassadi  J Chiu 《FASEB journal》2000,14(14):2130-2132
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.  相似文献   

9.
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.  相似文献   

10.
11.
12.
We describe regulation of the subcellular localization of cyclic AMP (cAMP)-dependent protein kinase (PKA) regulatory (Cgs1p) and catalytic (Pka1p) subunits in the fission yeast Schizosaccharomyces pombe in response to physiological stresses and during sexual differentiation as determined by fluorescence microscopy of the Cgs1-green fluorescent protein (GFP) and Pka1-GFP fusion proteins, respectively. In wild-type S. pombe cells cultured to log phase under normal growth conditions, Cgs1p and Pka1p are concentrated in the nucleus and more diffusely present in the cytoplasm. Nuclear localization of both proteins is dependent on cAMP, since in cells lacking adenylate cyclase they are detectable only in the cytoplasm. In cells lacking Cgs1p or both Cgs1p and adenylate cyclase, Pka1p is concentrated in the nucleus, demonstrating a role for Cgs1p in the nuclear exclusion of Pka1p. Nuclear-cytoplasmic redistribution of Cgs1p and Pka1p is triggered by growth in glucose-limited or hyperosmotic media and in response to stationary-phase growth. In addition, both proteins are excluded from the nucleus in mating cells undergoing karyogamy and subsequently concentrated in postmeiotic spores. Cgs1p is required for subcellular redistribution of Pka1p induced by growth in glucose-limited and hyperosmotic media and during karyogamy but is not required for Pka1p redistribution triggered by stationary-phase growth or for the enrichment of Pka1p in spores. Our results demonstrate that PKA localization is regulated by cAMP and regulatory subunit-dependent and -independent mechanisms in S. pombe.  相似文献   

13.
The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p-14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling.  相似文献   

14.
15.
16.
17.
18.
Mutations in mitochondrial DNA (mtDNA) have been reported in cancer and are involved in the pathogenesis of many mitochondrial diseases. Uracil-DNA glycosylase, encoded by the UNG1 gene in Saccharomyces cerevisiae, repairs uracil in DNA formed due to deamination of cytosine. Our study demonstrates that inactivation of the UNG1 gene leads to at least a 3-fold increased frequency of mutations in mtDNA compared with the wild-type. Using a Ung1p–green fluorescent protein (GFP) fusion construct, we demonstrate that yeast yUng1–GFP protein localizes to both mitochondria and the nucleus, indicating that Ung1p must contain both a mitochondrial localization signal (MLS) and a nuclear localization signal. Our study reveals that the first 16 amino acids at the N-terminus contain the yUng1p MLS. Deletion of 16 amino acids resulted in the yUng1p–GFP fusion protein being transported to the nucleus. We also investigated the intracellular localization of human hUng1p–GFP in yeast. Our data indicate that hUng1p–GFP predominately localizes to the mitochondria. Further analysis identified the N-terminal 16 amino acids as important for localization of hUng1 protein into the mitochondria. Expression of both yeast and human UNG1 cDNA suppressed the frequency of mitochondrial mutation in UNG1-deficient cells. However, expression of yUNG1 in wild-type cells increased the frequency of mutations in mtDNA, suggesting that elevated expression of Ung1p is mutagenic. An increase in the frequency of mitochondrial mutants was also observed when hUNG1 site-directed mutants (Y147C and Y147S) were expressed in mitochondria. Our study suggests that deamination of cytosine is a frequent event in S.cerevisiae mitochondria and both yeast and human Ung1p repairs deaminated cytosine in mitochondria.  相似文献   

19.
Budding yeast adjusts to increases in external osmolarity via a specific mitogen-activated protein kinase signal pathway, the high-osmolarity glycerol response (HOG) pathway. Studies with a functional Hog1-green fluorescent protein (GFP) fusion reveal that even under nonstress conditions the mitogen-activated protein kinase Hog1 cycles between cytoplasmic and nuclear compartments. The basal distribution of the protein seems independent of its activator, Pbs2, and independent of its phosphorylation status. Upon osmotic challenge, the Hog1-GFP fusion becomes rapidly concentrated in the nucleus from which it is reexported after return to an iso-osmotic environment or after adaptation to high osmolarity. The preconditions and kinetics of increased nuclear localization correlate with those found for the dual phosphorylation of Hog1-GFP. The duration of Hog1 nuclear residence is modulated by the presence of the general stress activators Msn2 and Msn4. Reexport of Hog1 to the cytoplasm does not require de novo protein synthesis but depends on Hog1 kinase activity. Thus, at least three different mechanisms contribute to the intracellular distribution pattern of Hog1: phosphorylation-dependent nuclear accumulation, retention by nuclear targets, and a kinase-induced export.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号