首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线粒体不但是细胞内重要的能量提供者,而且在病毒感染后引起的细胞凋亡中扮演着极为重要的角色。新发现的线粒体抗病毒蛋白将线粒体与先天性免疫联系起来,这也意味着宿主免疫反应和细胞凋亡可能与线粒体密切相关,显示出线粒体在细胞内的重要作用,提示应加强对线粒体在抗病毒感染和治疗等方面作用的研究。  相似文献   

2.
Throughout the process of pathogen-host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus.  相似文献   

3.
In the past decade, emerging viral outbreaks like SARS-CoV-2, Zika and Ebola have presented major challenges to the global health system. Viruses are unique pathogens in that they fully rely on the host cell to complete their lifecycle and potentiate disease. Therefore, programmed cell death (PCD), a key component of the host innate immune response, is an effective strategy for the host cell to curb viral spread. The most well-established PCD pathways, pyroptosis, apoptosis and necroptosis, can be activated in response to viruses. Recently, extensive crosstalk between PCD pathways has been identified, and there is evidence that molecules from all three PCD pathways can be activated during virus infection. These findings have led to the emergence of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. While PCD is important to eliminate infected cells, many viruses are equipped to hijack host PCD pathways to benefit their own propagation and subvert host defense, and PCD can also lead to the production of inflammatory cytokines and inflammation. Therefore, PANoptosis induced by viral infection contributes to either host defense or viral pathogenesis in context-specific ways. In this review, we will discuss the multi-faceted roles of PCD pathways in controlling viral infections.  相似文献   

4.
5.
Apoptosis of virus-infected cells is one important host strategy used to limit viral infection. Recently a member of the innate immune signaling pathway, MAVS, was localized to mitochondria, an organelle important for apoptosis regulation. Here we investigate what role MAVS may play in apoptosis. Induction of cell death led to the rapid cleavage of MAVS, resulting in its release from the outer mitochondrial membrane. This cleavage is blocked in cells incubated with proteasome or caspase inhibitors. Transfection of synthetic viral dsRNA and dsDNA also led to cleavage of MAVS, indicating that this process may be important during infection. Preventing apoptosis by over-expression of anti-apoptotic Bcl-xL blocks MAVS cleavage, placing this process downstream of caspase activation in the apoptotic program.  相似文献   

6.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

7.
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.  相似文献   

8.
病毒入侵宿主细胞时,宿主细胞启动抑制病毒复制的免疫机制.同样,病毒也会利用多种手段去逃避先天免疫感应机制的监测以及宿主细胞对外来者的降解,同时还会操纵宿主细胞为自身的增殖提供便利.DEAD-box解旋酶家族是一类存在于宿主细胞中的功能蛋白,它们在转录、剪接、mRNA的合成和翻译等多种细胞过程中起着关键作用.该家族成员拥...  相似文献   

9.
Koyama S  Ishii KJ  Coban C  Akira S 《Cytokine》2008,43(3):336-341
In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation.  相似文献   

10.
RNA silencing plays an important role in development through the action of micro (mi) RNAs that fine tune the expression of a large portion of the genome. But, in plants and insects, it is also a very important player in innate immune responses, especially in antiviral defense. It is now well established that the RNA silencing machinery targets plant as well as insect viruses. While the genetic basis underlying this defense mechanism in these organisms starts being elucidated, much less is known about the possible antiviral role of RNA silencing in mammals. In order to identify siRNAs coming from viruses in infected human cells, small RNAs from cells infected with RNA viruses, such as hepatitis C virus, yellow fever virus or HIV-1, were cloned and sequenced, but no virus-specific siRNAs could be detected. On the contrary, viral small RNAs were found in cells infected by the DNA virus Epstein-Barr. A closer look at these revealed that they were not siRNAs, but rather resembled miRNAs. This finding indicated that, rather than being targeted by RNA silencing, human DNA viruses seem to have evolved their own miRNAs to modulate the expression of host genes. This primary observation has been extended to other members of the herpesvirus family as well as other DNA viruses such as the polyomavirus SV40. Viral miRNAs have the potential to act both in cis to regulate expression of viral genes, or in trans on host genes. There are good indications for the cis mode of action, but the identification of cellular targets of these small viral regulators is only in its infancy.  相似文献   

11.
Host defense, viruses and apoptosis   总被引:14,自引:0,他引:14  
To thwart viral infection, the host has developed a formidable and integrated defense network that comprises our innate and adaptive immune response. In recent years, it has become clear that in an attempt to prevent viral replication, viral dissemination or persistent viral infection of the cell, many of these protective measures actually involve the induction of programmed cell death, or apoptosis. An initial response to viral infection primarily involves the innate arm of immunity and the killing of infected cells with cytotoxic lymphocytes such as natural killer (NK) cells through mechanisms that include the employment of perforin and granzymes. Once the virus has invaded the cell, however, a second host defense-mediated response is also triggered which involves the induction of a family of cytokines known as the interferons (IFNs). The IFNs, which are essential for initiating and coordinating a successful antiviral response, function by stimulating the adaptive arm of immunity involving cytotoxic T cells (CTLs), and by inducing a number of intracellular genes that directly prevent virus replication/cytolysis or that facilitate apoptosis. The IFN-induced gene family is now known to comprise the death ligand TRAIL, the dsRNA-dependent protein kinase (PKR), interferon regulatory factors (IRFs) and the promyelocytic leukemia gene (PML), all of which have been reported to be mediators of cell death. That DNA array analyses indicate that numerous cellular genes, many as yet uncharacterized, may similarly be induced by IFN, further emphasizes the likely importance that these cytokines have in the modulation of apoptosis. This likelihood is additionally underlined by the elaborate strategies developed by viruses to inhibit IFN-antiviral function and the mechanisms of cell death.  相似文献   

12.
Barrier to autointegration factor (BAF) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. Herein, we demonstrate a cytoplasmic role for BAF in host defense during poxviral infections. Vaccinia is the prototypic poxvirus, a family of DNA viruses that replicate exclusively in the cytoplasm of infected cells. Mutations in the vaccinia B1 kinase (B1) compromise viral DNA replication, but the mechanism by which B1 achieves this has remained elusive. We now show that BAF acts as a potent inhibitor of poxvirus replication unless its DNA-binding activity is blocked by B1-mediated phosphorylation. These data position BAF as the effector of an innate immune response that prevents replication of exogenous viral DNA in the cytoplasm. To enable the virus to evade this defense, the poxviral B1 has evolved to usurp a signaling pathway employed by the host cell.  相似文献   

13.
In the struggle for optimal host defense against infection with viruses, two major events are critical: death of the infected host cell and proper immune cell activation at the site of infection. Here we summarize our recent work indicating that chemokines exhibit a distinct capacity to regulate both of these events. We put particular emphasis on a recently completed study indicating that chemokine CCL5 may prevent cell death and thereby preserve innate immune cell function in the setting of viral infection. In addition, we introduce new work to support the more traditional role of CCL5 in mediating adaptive immune cell traffic and activation in this same setting.  相似文献   

14.
Apoptosis is increasingly implicated as an early line of defense against viral infections. Viruses have devised numerous strategies to delay apoptosis of infected cells. Many viruses encode cell death suppressors that target mitochondrial apoptotic signaling pathway, indicating the importance of this pathway in the anti-viral response. Human and primate cytomegaloviruses encode the viral mitochondria-localized inhibitor of apoptosis vMIA, but no overt homologue of vMIA was identified in any non-primate cytomegalovirus. Here we report that m38.5 protein encoded by murine cytomegalovirus, which is unrelated to vMIA in its amino acid sequence, delays death receptor ligation-induced cell death, and that m38.5 associates with Bax, recruits it to mitochondria, and blocks Bax-mediated but not Bak-mediated mitochondrial outer membrane permeabilization. Thus, primate and murine cytomegaloviruses have evolved non-homologous but functionally similar cell death suppressors selectively targeting the Bax-mediated branch of the mitochondrial apoptotic signaling pathway, indicating the importance of this branch in the response of diverse host organisms against cytomegalovirus infections.  相似文献   

15.
Viruses manipulate host cells to ensure their own survival and, at late stages of the viral life cycle, they kill the infected target cell to ensure their propagation. In addition, some viruses induce a bystander killing, a viral strategy to escape from the host's innate and cognate defense systems. In HIV-infection, the disabling of the immune system is initially due to the preferential depletion by apoptosis of virus-specific CD4+ T cells in lymphoid tissues, followed by the destruction of non-infected bystander cells. Both the extrinsic and the intrinsic pathways are activated, and this is the consequence of systemic immune activation. This review presents recent developments showing that the gastrointestinal tract is the major reservoir of infected cells and the site of rapid and profound loss of CD4 T cells, and that microbial translocation from the gastrointestinal tract is the cause of immune activation. Furthermore, apoptosis mechanisms involved in HIV-induced neuropathological disorders are discussed, including the role of syncytia that involve the sequential activation of ATM, p38MAPK and p53. Finally, HIV-associated dementia (HAD) was recently found in monkey models to be linked to inhibition of autophagy in neurons, suggesting that homeostasis of autophagy is a reliable security factor for neurons, and challenging the development of new therapeutics aimed at boosting neuronal autophagy to prevent HAD.  相似文献   

16.
Interferons (IFN) are potent immune stimulators that play key roles in both innate and adaptive immune responses. They are considered the first line of defense against viral pathogens and can even be used as treatments to boost the immune system. While viruses are usually seen as a threat to the host, an emerging class of cancer therapeutics exploits the natural capacity of some viruses to directly infect and kill cancer cells. The cancer-specificity of these bio-therapeutics, called oncolytic viruses (OVs), often relies on defective IFN responses that are frequently observed in cancer cells, therefore increasing their vulnerability to viruses compared to healthy cells. To ensure the safety of the therapy, many OVs have been engineered to further activate the IFN response. As a consequence of this IFN over-stimulation, the virus is cleared faster by the immune system, which limits direct oncolysis. Importantly, the therapeutic activity of OVs also relies on their capacity to trigger anti-tumor immunity and IFNs are key players in this aspect. Here, we review the complex cancer–virus–anti-tumor immunity interplay and discuss the diverse functions of IFNs for each of these processes.  相似文献   

17.
18.
19.
RIG-I-like receptors (RLRs) play important roles in the host defense to numerous viral pathogens. Since they were discovered, much light has been shed on the molecular details of how these cytoplasmic viral RNA receptors sense viral infection and orchestrate antiviral innate immunity. Intriguingly, in addition to viral RNA binding, a series of posttranslational modifications (PTMs) is required for the rapid activation of RLRs and, inversely, for the prevention of aberrant innate immune signaling. Recent discoveries have shown that viruses manipulate the PTMs of RLRs to escape innate immune detection. This article highlights some of these recent findings in this fast-evolving field.  相似文献   

20.
The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context - which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans - is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号