首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The aryl hydrocarbon receptor nuclear translocator (Arnt) and hypoxia-inducible factor (HIF)-1alpha mediate cellular responses to hypoxia. We investigated the ability of hypoxia to regulate Arnt and HIF-1alpha mRNA in the heart in vivo. We cloned avian Arnt, developed an in vivo model of chronic cardiac hypoxia, and measured expression of cardiac Arnt and HIF-1alpha mRNA by quantitative RT-PCR. Chronic hypoxic exposure (24 h to 15% O(2)) of day 9 chick embryos resulted in a 30-fold increase in covalent binding of (3)H-misonidazole, a hypoxic tissue marker, to cardiac tissue, and a 2-fold induction of cardiac inducible nitric oxide synthase mRNA, compared to normoxic controls. In this same model, cardiac Arnt mRNA expression decreased by 35%, while HIF-1alpha mRNA expression increased 400%. These data suggest that regulation of Arnt and HIF-1alpha mRNA expression may contribute to the physiological responses of the heart during prolonged hypoxia.  相似文献   

5.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

6.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

7.
The heterodimer HIF‐1α (hypoxia inducible factor)/HIF‐β (also known as ARNT‐aryl hydrocarbon nuclear translocator) is a key mediator of cellular response to hypoxia. The interaction between these monomer units can be modified by the action of small molecules in the binding interface between their C‐terminal heterodimerization (PasB) domains. Taking advantage of the presence of several cysteine residues located in the allosteric cavity of HIF‐1α PasB domain, we applied a cysteine‐based reactomics “hotspot identification” strategy to locate regions of HIF‐1α PasB domain critical for its interaction with ARNT. COMPOUND 5 was identified using a mass spectrometry‐based primary screening strategy and was shown to react specifically with Cys255 of the HIF‐1α PasB domain. Biophysical characterization of the interaction between PasB domains of HIF‐1α and ARNT revealed that covalent binding of COMPOUND 5 to Cys255 reduced binding affinity between HIF‐1α and ARNT PasB domains approximately 10‐fold. Detailed NMR structural analysis of HIF‐1α‐PasB‐COMPOUND 5 conjugate showed significant local conformation changes in the HIF‐1α associated with key residues involved in the HIF‐1α/ARNT PasB domain interaction as revealed by the crystal structure of the HIF‐1α/ARNT PasB heterodimer. Our screening strategy could be applied to other targets to identify pockets surrounding reactive cysteines suitable for development of small molecule modulators of protein function.  相似文献   

8.
乏氧诱导因子结构、表达及调控   总被引:2,自引:0,他引:2  
乏氧诱导因子(HIF)是乏氧应答中起重要作用的转录因子,一直是乏氧研究的焦点.HIF由α亚基和β亚基组成,α亚基包括HIF-1α、HIF-2α和HIF-3α,其中α亚基因诱导条件不同通过选择性剪接产生不同变体.β亚基包括ARNT、ARNT2和ARNT3.α与β亚基在乏氧等应激反应时形成二聚体HIF启动靶基因转录表达,参与多种细胞生物学功能的调控.目前为止,大多数的研究都集中于野生型HIF-1α,对它的结构、表达调控及其调控做了相对全面而清楚的了解.后来通过多种策略及方法,陆续发现并克隆出了除HIF-1α外的HIF各亚基.研究不再局限于HIF-1α,而是扩展至HIF整个系统,如相继发现的HIF-2α和HIF-3α亚基,以及它们的变体,对HIF-1α的研究也更深入了,但是关于HIF-1α的变体、HIF-2α、HIF-3α及β亚基的表达调控及功能还不明确,是未来研究的方向.本文全面介绍HIF的最新研究进展,阐述HIF各亚基的结构、表达调控及其靶基因的表达情况.  相似文献   

9.
10.
Placental development initially occurs in a low-oxygen (O2) or hypoxic environment. In this report we show that two hypoxia-inducible factors (HIFs), HIF1alpha and HIF2alpha, are essential for determining murine placental cell fates. HIF is a heterodimer composed of HIFalpha and HIFbeta (ARNT) subunits. Placentas from Arnt-/- and Hif1alpha-/- Hif2alpha-/- embryos exhibit defective placental vascularization and aberrant cell fate adoption. HIF regulation of Mash2 promotes spongiotrophoblast differentiation, a prerequisite for trophoblast giant cell differentiation. In the absence of Arnt or Hifalpha, trophoblast stem cells fail to generate these cell types and become labyrinthine trophoblasts instead. Therefore, HIF mediates placental morphogenesis, angiogenesis, and cell fate decisions, demonstrating that O2 tension is a critical regulator of trophoblast lineage determination. This novel genetic approach provides new insights into the role of O2 tension in the development of life-threatening pregnancy-related diseases such as preeclampsia.  相似文献   

11.
12.
13.
Accumulating data suggest the existence of a link between hypoxia and maintenance of the undifferentiated cell state, but little is known about the cellular signaling mechanisms underlying this process. Recent reports reveal a direct link between components of the hypoxia signaling pathway and Notch pathway in maintaining precursor cells in an undifferentiated state. Here, we report that in the developing mouse pancreas, Hif2-α is expressed in pancreatic progenitor cells, but its expression is lost in committed endocrine progenitors as well as in differentiated endocrine and exocrine cells. In an attempt to analyze the function of HIF2-α in the developing pancreas, we studied Hif2-α−/− pancreas. Our analyses revealed that in addition to the decreased size and branching, the Hif2-α deficient pancreas also displayed impaired notch signaling and cell differentiation. Finally, we found that HIF2-α binds directly to Notch-IC and that the responsible site for this interaction is within the RAM domain of Notch protein. These results suggest that HIF2-α is required for normal mouse pancreatic development.  相似文献   

14.
Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type-specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34(+) haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl(2) induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions.  相似文献   

15.
16.
17.
In obesity, adipocytes distant from vasculature become hypoxic and dysfunctional. This hypoxic response is mediated by hypoxia-inducible factors (Hif1α, Hif2α, and Hif3α) and their obligate partner, Hif1β (Arnt). We show that mice lacking Hif1β in fat (FH1βKO) are lean, exhibit reduced adipocyte size, and are protected from age- and diet-induced glucose intolerance. There is also reduced Vegf and vascular permeability in FH1βKO fat, but diet-induced inflammation and fibrosis is unchanged. Adipocytes from FH1βKO mice have reduced glucose uptake due to decreased Glut1 and Glut4, which is mirrored in 3T3-L1 adipocytes with Hif1β knockdown. Hif1β knockdown cells also fail to respond appropriately to hypoxia with reduced cellular respiration and reduced mitochondrial gene expression. Some, but not all, of these effects are reproduced by Hif1α knockdown. Thus, Hif1β/Arnt regulates glucose uptake, mitochondrial gene expression, and vascular permeability to control adipose mass and function, providing a target for obesity therapy.  相似文献   

18.
19.
Hypoxia inducible factors (HIFs) are important mediators of the cellular adaptive response during acute hypoxia. The role of HIF-1 and HIF-2 during prolonged periods of hypoxia, i.e. chronic hypoxia is less defined. Therefore, we used human THP-1 macrophages with a knockdown of either HIF-1α, HIF-2α, or both HIFα-subunits, incubated them for several days under hypoxia (1% O2), and analyzed responses to hypoxia using 2D-DIGE coupled to MS/MS-analysis. Chronic hypoxia was defined as a time point when the early but transient accumulation of HIFα-subunits and mRNA expression of classical HIF target genes returned towards basal levels, with a new steady state that was constant from 72 h onwards. From roughly 800 spots, that were regulated comparing normoxia to chronic hypoxia, about 100 proteins were unambiguously assigned during MS/MS-analysis. Interestingly, a number of glycolytic proteins were up-regulated, while a number of inner mitochondrial membrane proteins were down-regulated independently of HIF-1α or HIF-2α. Chronic hypoxic conditions depleted the mitochondrial mass by autophagy, which occurred independently of HIF proteins. Macrophages tolerate periods of chronic hypoxia very well and adaptive responses occur, at least in part, independently of HIF-1α and/or HIF-2α and comprise mitophagy as a pathway of particular importance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号