首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is an autosomal recessive degenerative disorder caused by a GAA triplet expansion or point mutations in the FRDA gene on chromosome 9q13. The FRDA gene product, frataxin, is a widely expressed mitochondrial protein, which is severely reduced in FRDA patients. The demonstration that deficit of frataxin in FRDA is associated with mitochondrial iron accumulation, increased sensitivity to oxidative stress, deficit of respiratory chain complex activities and in vivo impairment of cardiac and skeletal muscle tissue energy metabolism, has established FRDA as a "new" nuclear encoded mitochondrial disease. Pilot studies have shown the potential effect of antioxidant therapy based on idebenone or coenzyme Q 10 plus Vitamin E administration in this condition and provide a strong rationale for designing larger randomized clinical trials.  相似文献   

2.
Insulin resistance in skeletal muscle is a characteristic feature of diabetes mellitus type 2 (DM2). Several lines of circumstantial evidence suggest that reduced mitochondrial oxidative phosphorylation capacity in skeletal muscle is a primary defect causing insulin resistance and subsequent development of DM2. We have now experimentally tested this hypothesis by characterizing glucose homeostasis in tissue-specific knockout mice with progressive respiratory chain dysfunction selectively in skeletal muscle. Surprisingly, these knockout mice are not diabetic and have an increased peripheral glucose disposal when subjected to a glucose tolerance test. Studies of isolated skeletal muscle from knockout animals show an increased basal glucose uptake and a normal increase of glucose uptake in response to insulin. In summary, our findings indicate that mitochondrial dysfunction in skeletal muscle is not a primary etiological event in DM2.  相似文献   

3.
4.
Mitochondrial damage and dysfunction in traumatic brain injury   总被引:3,自引:0,他引:3  
The enduring cognitive deficits and histopathology associated with traumatic brain injury (TBI) may arise from damage to mitochondrial populations, which initiates the metabolic dysfunction observed in clinical and experimental TBI. The anecdotal evidence for in vivo structural damage to mitochondria corroborates metabolic and physiologic dysfunction, which depletes substrates and promotes free radical generation. Excessive calcium pathology differentially disrupts the heterogeneous mitochondrial population, such that calcium sensitivity increases after TBI. The ongoing pathology may escalate to include protein and DNA oxidation that impacts mitochondrial function and promotes cell death. Thus, in vivo TBI damages, if not eliminates, mitochondrial populations depending on injury severity, with the remaining population left to provide metabolic support for survival or repair in the wake of cellular pathology. With a considerable understanding of post-injury mitochondrial populations, therapeutic interventions targeted to the mitochondria may delay or prevent secondary cascades that lead to long-term cell death and neurobehavioral disability.  相似文献   

5.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is an autosomal recessive degenerative disorder caused by a GAA triplet expansion or point mutations in the FRDA gene on chromosome 9q13. The FRDA gene product, frataxin, is a widely expressed mitochondrial protein, which is severely reduced in FRDA patients. The demonstration that deficit of frataxin in FRDA is associated with mitochondrial iron accumulation, increased sensitivity to oxidative stress, deficit of respiratory chain complex activities and in vivo impairment of cardiac and skeletal muscle tissue energy metabolism, has established FRDA as a "new" nuclear encoded mitochondrial disease. Pilot studies have shown the potential effect of antioxidant therapy based on idebenone or coenzyme Q 10 plus Vitamin E administration in this condition and provide a strong rationale for designing larger randomized clinical trials.  相似文献   

6.
Tgalphaq44 mice with targeted overexpression of activated Galphaq protein in cardiomyocytes mimic many of the phenotypic characteristics of dilated cardiomyopathy in humans. However, it is not known whether the phenotype of Tgalphaq44 mice would also involve dysfunction of cardiac mitochondria. The aim of the present work was to examine changes in EPR signals of semiquinones and iron in Fe-S clusters, as compared to classical biochemical indices of mitochondrial function in hearts from Tgalphaq44 mice in relation to the progression of heart failure. Tgalphaq44 mice at the age of 14 months displayed pulmonary congestion, increased heart/body ratio and impairment of cardiac function as measured in vivo by MRI. However, in hearts from Tgalphaq44 mice already at the age of 10 months EPR signals of semiquinones, as well as cyt c oxidase activity were decreased, suggesting alterations in mitochondrial electron flow. Furthermore, in 14-months old Tgalphaq44 mice loss of iron in Fe-S clusters, impaired citrate synthase activity, and altered mitochondrial ultrastructure were observed, supporting mitochondrial dysfunction in Tgalphaq44 mice. In conclusion, the assessment of semiquinones content and Fe(III) analysis by EPR represents a rational approach to detect dysfunction of cardiac mitochondria. Decreased contents of semiquinones detected by EPR and a parallel decrease in cyt c oxidase activity occurs before hemodynamic decompensation of heart failure in Tgalphaq44 mice suggesting that alterations in function of cardiac mitochondria contribute to the development of the overt heart failure in this model.  相似文献   

7.
Progressive supranuclear palsy (PSP) is a neurodegenerative movement disorder of unknown etiology. We hypothesized that mitochondrial DNA (mtDNA) aberration could occur in this disease and contribute to its pathogenesis. To address this we created transmitochondrial cytoplasmic hybrid (cybrid) cell lines expressing mitochondrial genes from persons with PSP. The presence of cybrid mtDNA aberration was screened for by biochemical assay of mitochondrial gene products. Relative to a control cybrid set, complex I activity was reduced in PSP cybrid lines (p<0.005). Antioxidant enzyme activities were elevated in PSP cybrid lines. These data suggest that mtDNA aberration occurs in PSP, causes electron transport chain pathology, and can produce oxidative stress. Further study of mitochondrial dysfunction in PSP may yield insights into why neurodegeneration occurs in this disease.  相似文献   

8.
Insulin resistance increases PAI-1 in the heart   总被引:2,自引:0,他引:2  
To determine whether insulin resistance increases expression of plasminogen activator inhibitor type-1 (PAI-1) in the heart, studies were performed in 22 mice with and 38 without myocardial infarction. Insulin resistance in transgenic animals genetically rendered insulin resistant was confirmed with the use of intraperitoneal glucose tolerance tests. Myocardial infarction was induced by coronary ligation, verified echocardiographically, and quantified by assay of depletion of creatine kinase (CK) from the left ventricle 2 weeks later. PAI-1 increased markedly in zones of infarction to 10.4+/-2.1 (SF) and significantly more to 27.3+/-3.6 in normal and insulin resistant mice compared with 0.45+/-0.04 and 0.50+/-0.03 in normal myocardium. Thus, insulin resistance induced accumulation of PAI-1 in the heart, particularly in zones of infarction. Such increases may contribute to fibrosis and diastolic dysfunction typical late after infarction in patients with insulin resistance.  相似文献   

9.
Oxidative stress is an important susceptibility factor for dilated cardiomyopathy. We have investigated the effects of bisoprolol, a beta1-selective adrenoceptor blocker, on oxidative stress and the development of cardiac dysfunction in a model of dilated cardiomyopathy. Male TO-2 and control hamsters at 8 weeks of age were treated with bisoprolol (5 mg/kg per day) or vehicle for 4 weeks. Treatment with bisoprolol prevented the progression of cardiac dysfunction in TO-2 hamsters. This drug did not affect the increase in NADPH oxidase activity but prevented the reduction in activity and expression of mitochondrial manganese-dependent superoxide dismutase as well as the increases in the concentrations of interleukin-1beta and tumor necrosis factor-alpha in the left ventricle of TO-2 hamsters. Attenuation of the development of cardiac dysfunction by bisoprolol may thus result in part from normalization of the associated increases in the levels of oxidative stress and pro-inflammatory cytokines in the left ventricle.  相似文献   

10.
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic ‘backfill’ and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

11.
Myocardial remodeling and dysfunction are serious complications of type 2 diabetes mellitus (T2DM). Factors controlling their development are not well established. To specifically address the role of the mitochondrial genome, we developed novel conplastic rat strains, i.e. strains with the same nuclear genome but a different mitochondrial genome. The new animals were named T2DN(mtFHH) and T2DN(mtWistar), where the acronym T2DN denotes their common nuclear genome (type 2 diabetic nephropathy (T2DN) rats) and mtFHH or mtWistar the origin of their mitochondria, Fawn Hooded Hypertensive (FHH) or Wistar rats, respectively. The T2DN(mtFHH) and T2DN(mtWistar) showed a similar progression of diabetes as determined by HbA1c, cholesterol, and triglycerides with normal blood pressure, thus enabling investigation of the specific role of the mitochondrial genome in cardiac function without the confounding effects of obesity or hypertension found in other models of diabetes. Echocardiographic analysis of 12-week-old animals showed no abnormalities, but at 12 months of age the T2DN(mtFHH) showed left ventricular remodeling that was verified by histology. Decreased complex I and complex IV but not complex II activity within the electron transport chain was found only in T2DN(mtFHH), which was not explained by differences in protein content. Decreased cardiac ATP levels in T2DN(mtFHH) were in agreement with a lower ATP synthetic capacity by isolated mitochondria. Together, our data provide experimental evidence that mtDNA sequence variations have an additional role in energetic heart deficiency. The mitochondrial DNA background may explain the increased susceptibility of certain T2DM patients to develop myocardial dysfunction.  相似文献   

12.
Callyspongiolide is a marine macrolide known to induce caspase-independent cancer cell death. While its toxic effects have been known, the mechanism leading to cell death is yet to be identified. We report that Callyspongiolide R form at C-21 (cally2R) causes mitochondrial dysfunction by inhibiting mitochondrial complex I or II, leading to a disruption of mitochondrial membrane potential and a deprivation of cellular energy. Subsequently, we observed, using electron microscopy, a drastic formation of autophagosome and mitophagy. Supporting these data, LC3, an autophagosome marker, was shown to co-localize with LAMP2, a lysosomal protein, showing autolysosome formation. RNA sequencing results indicated the induction of hypoxia and blocking of EGF-dependent pathways, which could be caused by induction of autophagy. Furthermore, mTOR and AKT pathways preventing autophagy were repressed while AMPK was upregulated, supporting autophagosome progress. Finally, the combination of cally2R with known anti-cancer drugs, such as gefitinib, sorafenib, and rapamycin, led to synergistic cell death, implicating potential therapeutic applications of callyspongiolide for future treatments.  相似文献   

13.
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we generated and analyzed SMS1-null mice. SMS1-null mice exhibited moderate neonatal lethality, reduced body weight, and loss of fat tissues mass, suggesting that they might have metabolic abnormality. Indeed, analysis on glucose metabolism revealed that they showed severe deficiencies in insulin secretion. Isolated mutant islets exhibited severely impaired ability to release insulin, dependent on glucose stimuli. Further analysis indicated that mitochondria in mutant islet cells cannot up-regulate ATP production in response to glucose. We also observed additional mitochondrial abnormalities, such as hyperpolarized membrane potential and increased levels of reactive oxygen species (ROS) in mutant islets. Finally, when SMS1-null mice were treated with the anti-oxidant N-acetyl cysteine, we observed partial recovery of insulin secretion, indicating that ROS overproduction underlies pancreatic β-cell dysfunction in SMS1-null mice. Altogether, our data suggest that SMS1 is important for controlling ROS generation, and that SMS1 is required for normal mitochondrial function and insulin secretion in pancreatic β-cells.  相似文献   

14.
The relationship between insulin resistance and mitochondrial function is of increasing interest. Studies looking for such interactions are usually made in muscle and only a few studies have been done in liver, which is known to be a crucial partner in whole body insulin action. Recent studies have revealed a similar mechanism to that of muscle for fat-induced insulin resistance in liver. However, the exact mechanism of lipid metabolites accumulation in liver leading to insulin resistance is far from being elucidated. One of the hypothetical mechanisms for liver steatosis development is an impairment of mitochondrial function. We examined mitochondrial function in fatty liver and insulin resistance state using isolated mitochondria from obese Zucker rats. We determined the relationship between ATP synthesis and oxygen consumption as well as the relationship between mitochondrial membrane potential and oxygen consumption. In order to evaluate the quantity of mitochondria and the oxidative capacity we measured citrate synthase and cytochrome c oxidase activities. Results showed that despite significant fatty liver and hyperinsulinemia, isolated liver mitochondria from obese Zucker rats display no difference in oxygen consumption, ATP synthesis, and membrane potential compared with lean Zucker rats. There was no difference in citrate synthase and cytochrome c oxidase activities between obese and lean Zucker rats in isolated mitochondria as well as in liver homogenate, indicating a similar relative amount of hepatic mitochondria and a similar oxidative capacity. Adiponectin, which is involved in bioenergetic homeostasis, was increased two-fold in obese Zucker rats despite insulin resistance. In conclusion, isolated liver mitochondria from lean and obese insulin-resistant Zucker rats showed strictly the same mitochondrial function. It remains to be elucidated whether adiponectin increase is involved in these results.  相似文献   

15.
Mitochondrial dysfunction and heart disease   总被引:1,自引:0,他引:1  
Rosenberg P 《Mitochondrion》2004,4(5-6):621-628
  相似文献   

16.
Diabetes is a major health problem associated with adverse cardiovascular outcomes. The apolipoprotein A-I mimetic peptide L-4F is a putative anti-diabetic drug, has antioxidant and anti-inflammatory proprieties and improves endothelial function. In obese mice L-4F increases adiponectin levels, improving insulin sensitivity, and reducing visceral adiposity. We hypothesized that the pleiotropic actions of L-4F can prevent heart and coronary dysfunction in a mouse model of genetically induced Type II diabetes. We treated db/db mice with either L-4F or vehicle for 8 weeks. Trans-thoracic echocardiography was performed; thereafter, isolated hearts were subjected to ischemia/reperfusion (IR). Glucose, insulin, adiponectin, and pro-inflammatory cytokines (IL-1β, TNF-α, MCP-1) were measured in plasma and HO-1, pAMPK, peNOS, iNOS, adiponectin, and superoxide in cardiac tissue. In db/db mice L-4F decreased accumulation of subcutaneous and total fat, and increased insulin sensitivity and adiponectin levels while lowering inflammatory cytokines (P < 0.05). L-4F normalized in vivo left ventricular (LV) function of db/db mice, increasing (P < 0.05) fractional shortening and decreasing (P < 0.05) LV dimensions. In I/R experiments, L-4F prevented coronary microvascular resistance from increasing and LV function from deteriorating in the db/db mice. These changes were associated with increased cardiac expression of HO-1, pAMPK, peNOS, and adiponectin and decreased levels of superoxide and iNOS (P < 0.01). In the present study we showed that L-4F prevented myocardial and coronary functional abnormalities in db/db mice. These effects were associated with stimulation of HO-1 resulting in increased levels of anti-inflammatory, anti-oxidative, and vasodilatatory action through a mechanism involving increased levels of adiponectin, pAMPK, and peNOS.  相似文献   

17.
Abstract

Introduction

Leptin has lipid peroxidation properties in healthy individuals. Here we aimed to study the correlation between serum-oxidized low-density lipoprotein (ox-LDL) and leptin levels in patients with type 2 diabetes. We also studied the effect of metformin therapy on the correlation between serum ox-LDL and leptin levels in patients with newly diagnosed diabetes.

Methods

We performed a cross-sectional study on two groups of patients with type 2 diabetes stratified according to (1) patients with newly diagnosed diabetes and (2) patients with long-standing diabetes plus healthy controls. Patients with newly diagnosed diabetes were followed for 3 months after the initiation of metformin therapy.

Results

Patients with type 2 diabetes had a higher serum ox-LDL, ox-LDL/LDL ratio, waist circumference, fasting blood sugars (FBSs), hemoglobin A1C (HbA1C), triglyceride, homeostatic model assessment of insulin resistance (HOMA-IR) and a lower serum leptin levels than controls. Serum ox-LDL, ox-LDL/LDL ratio (0.08 (0.08–0.12) vs. 0.06 (0.05–0.08), P < 0.001) and HOMA-IR (3.26 ± 0.23 vs. 2.93 ± 0.32; P < 0.01) were decreased when serum leptin levels (15.9 ± 1.6 vs. 21.4 ± 2.5, P < 0.01) were increased after 3 months of metformin therapy. This remained significant after multiple adjustments for age, body mass index, FBS, HbA1c, and HOMA-IR. Leptin was significantly correlated with ox-LDL/LDL ratio in controls (r = 0.78, P < 0.01), and in patients with newly diagnosed diabetes (r = 0.4, P < 0.05), after metformin therapy. There were not any correlation between leptin and ox-LDL/LDL ratio in patients with long-standing diabetes and patients with newly diagnosed diabetes before treatment.

Discussion

Metformin restores the positive correlation between serum ox-LDL and leptin levels in patients with type 2 diabetes.  相似文献   

18.
Aminoacyl-tRNA synthetases (ARS) are modular enzymes that aminoacylate transfer RNAs (tRNA) for their use by the ribosome during protein synthesis. ARS are essential and universal components of the genetic code that were almost completely established before the appearance of the last common ancestor of all living species. This long evolutionary history explains the growing number of functions being discovered for ARS, and for ARS homologues, beyond their canonical role in gene translation. Here we present a previously uncharacterized paralogue of seryl-tRNA synthetase named SLIMP (seryl-tRNA synthetase-like insect mitochondrial protein). SLIMP is the result of a duplication of a mitochondrial seryl-tRNA synthetase (SRS) gene that took place in early metazoans and was fixed in Insecta. Here we show that SLIMP is localized in the mitochondria, where it carries out an essential function that is unrelated to the aminoacylation of tRNA. The knockdown of SLIMP by RNA interference (RNAi) causes a decrease in respiration capacity and an increase in mitochondrial mass in the form of aberrant mitochondria.  相似文献   

19.
Kemp GJ 《Mitochondrion》2004,4(5-6):629-640
In peripheral vascular disease, impaired muscle energy metabolism is assumed to be due mainly to defective vascular O2 supply, the resulting cellular hypoxia inhibiting oxidative ATP synthesis. Older work suggested a compensatory increase in muscle aerobic enzymes, but more recent studies suggest a relative decrease in some mitochondrial components and an accumulation of damage in mitochondrial DNA, perhaps due to reactive oxygen species. However, to establish whether in vivo muscle mitochondria suffer from anything other than a low concentration of O2 will require more knowledge of the mitochondrial behaviour at low PO2, and the actual cell PO2 during exercise.  相似文献   

20.
Normal mitochondrial respiration is associated with a continuous production of superoxide and hydrogen peroxide, inevitably resulting in minor macromolecular damage. Damaged cellular components are not completely turned over by autophagy and other cellular repair systems, leading to a progressive age-related accumulation of biological “garbage” material, such as defective mitochondria, cytoplasmic protein aggregates and an intralysosomal undegradable material, lipofuscin. These changes primarily affect neurons, cardiac myocytes and other long-lived postmitotic cells that neither dilute this “garbage” by mitotic activity, nor are replaced by newly differentiated cells. Defective mitochondria are insufficient in ATP production and often generate increased amounts of reactive oxygen species, further enhancing oxidative stress. Lipofuscin-loaded lysosomes, in turn, poorly turn over mitochondria that gradually leads to the overload of long-lived postmitotic cells with “garbage” material, decreased adaptability and eventual cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号