首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but can also be induced prematurely by telomere-independent events such as failure to repair DNA double strand breaks. Here, we review the molecular pathways of senescence onset, focussing on the changes in chromatin organization that are associated with cellular senescence, particularly senescence-associated heterochromatin foci formation. We also discuss the altered dynamics of the DNA double strand break response within the context of aging cells. Appreciating how, mechanistically, cellular senescence is induced, and how changes to chromatin organization and DNA repair contributes to this, is fundamental to our understanding of the normal and premature human aging processes associated with loss of organ and tissue function in humans.  相似文献   

2.
3.
由于体内外因素的影响,DNA损伤是生物生命周期中的常见现象,如果得不到及时的修复,DNA损伤的积累将导致基因组的不稳定及染色质的异常,并可能导致肿瘤的发生发展。SUMO化修饰是体内一个重要的蛋白质翻译后修饰,越来越多的研究发现SUMO化修饰与多个参与DNA损伤反应、维持基因组稳定的蛋白质相关,有可能参与肿瘤的发生。本文将阐述SUMO化修饰与DNA损伤修复的关系。  相似文献   

4.
Bacteria and eukaryotic cells employ a variety of enzymatic pathways to remove damage from DNA or to lessen its impact upon cellular functions. Most of these processes were discovered in Escherichia coli and have been most extensively analyzed in this organism because suitable mutants have been isolated and characterized. Analogous pathways have been inferred to exist in mammalian cells from the presence of enzyme activities similar to those known to be involved in repair in bacteria, from the analysis of events in cells treated with DNA damaging agents, and from the analysis of the few naturally occurring mutant cell types. Excision repair of pyrimidine dimers produced by UV in E coli is initiated by an incision event catalyzed by a complex composed of uvrA, uvrB, and uvrC gene products. Multiple exonuclease and polymerase activities are available for the subsequent excision and resynthesis steps. In addition to the constitutive pathway, which produces short patches of 20–30 nucleotides, an inducible excision repair process exists that produces much longer patches. This long patch pathway is controlled by the recA-lexA regulatory circuit and also requires the recF gene. It is apparently not responsible for UV-induced mutagenesis. However, the ability to perform inducible long patch repair correlates with enhanced bacterial survival and with a major component of the Weigle reactivation of bacteriophage with double-strand DNA genomes. Mammalian cells possess an excision repair pathway similar to the constitutive pathway in E coli. Although not as well understood, the incision event is at least as complex, and repair resynthesis produces patches of about the same size as the constitutive short patches. In mammalian cells, no patches comparable in size to those produced by the inducible pathway of E coli are observed. Repair in mammalian cells may be more complicated than in bacteria because of the structure of chromatin, which can affect both the distribution of DNA damage and its accessibility to repair enzymes. A coordinated alteration and reassembly of chromatin at sites of repair may be required. We have observed that the sensitivity of digestion by staphylococcal nuclease (SN) of newly synthesized repair patches resulting from excision of furocoumarin adducts changes with time in the same way as that of patches resulting from excision of pyrimidine dimers. Since furocoumarin adducts are formed only in the SN-sensitive linker DNA between nucleosome cores, this suggests that after repair resynthesis is completed, the nucleosome cores in the region of the repair event do not return exactly to their original positions. We have also studied excision repair of UV and chemical damage in the highly repeated 172 base pair α DNA sequence in African green monkey cells. In UV irradiated cells, the rate and extent of repair resynthesis in this sequence is similar to that in bulk DNA. However, in cells containing furocoumarin adducts, repair resynthesis in α DNA is only about 30% of that in bulk DNA. Since the frequency of adducts does not seem to be reduced in α DNA, it appears that certain adducts in this unique DNA may be less accessible to repair. Endonuclease V of bacteriophage T4 incises DNA at pyrimidine dimers by cleaving first the glycosylic bond between deoxyribose and the 5′ pyrimidine of the dimer and then the phosphodiester bond between the two pyrimidines. We have cloned the gene (denV) that codes for this enzyme and have demonstrated its expression in uvrA recA and uvrB recA cells of E coli. Because T4 endonuclease V can alleviate the excision repair deficiency of xeroderma pigmentosum when added to permeabilized cells or to isolated nuclei after UV irradiation, the cloned denV gene may ultimately be of value for analyzing DNA repair pathways in cultured human cells.  相似文献   

5.
Bürkle A 《Free radical research》2006,40(12):1295-1302
Half a century ago, when the free radical theory of aging was first proposed, the damaging effects of reactive oxygen species (ROS) were in the focus of attention and considered the single most important determinant of aging. Two decades later, however, the disposable soma theory of aging redirected the attention to the potential impact of cellular maintenance and repair pathways that are both genetically and environmentally determined and are counteracting the damaging effects of ROS. In the present paper, recent experimental data linking DNA repair pathways with the aging process are summarised. Special attention is paid to poly(ADP-ribosyl)ation, a DNA-damage driven posttranslational modification of proteins.  相似文献   

6.
7.
DNA glycosylases/AP lyases initiate repair of oxidized bases in the genomes of all organisms by excising these lesions and then cleaving the DNA strand at the resulting abasic (AP) sites and generate 3' phospho alpha,beta-unsaturated aldehyde (3' PUA) or 3' phosphate (3' P) terminus. In Escherichia coli, the AP-endonucleases (APEs) hydrolyze both 3' blocking groups (3' PUA and 3' P) to generate the 3'-OH termini needed for repair synthesis. In mammalian cells, the previously characterized DNA glycosylases, NTH1 and OGG1, produce 3' PUA, which is removed by the only AP-endonuclease, APE1. However, APE1 is barely active in removing 3' phosphate generated by the recently discovered mammalian DNA glycosylases NEIL1 and NEIL2. We showed earlier that the 3' phosphate generated by NEIL1 is efficiently removed by polynucleotide kinase (PNK) and not APE1. Here we show that the NEIL2-initiated repair of 5-hydroxyuracil (5-OHU) similarly requires PNK. We have also observed stable interaction between NEIL2 and other BER proteins DNA polymerase beta (Pol beta), DNA ligase IIIalpha (Lig IIIalpha) and XRCC1. In spite of their limited sequence homology, NEIL1 and NEIL2 interact with the same domains of Pol beta and Lig IIIalpha. Surprisingly, while the catalytically dispensable C-terminal region of NEIL1 is the common interacting domain, the essential N-terminal segment of NEIL2 is involved in analogous interaction. The BER proteins including NEIL2, PNK, Pol beta, Lig IIIalpha and XRCC1 (but not APE1) could be isolated as a complex from human cells, competent for repair of 5-OHU in plasmid DNA.  相似文献   

8.
Mukherjee A  Vasquez KM 《Biochimie》2011,93(8):1197-1208
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.  相似文献   

9.
周纪东  喻晓蔚 《生命科学》2002,14(5):288-290,274
乳腺癌和卵巢癌敏感基因BRCA1和BRCA2与同源重组,DNA损伤修复,胚胎生长,转录调控及遍在蛋白化有关,其中,BRCA1和BRCA2在DNA损伤修复和转录调控中功能的确定,将有助于探讨和阐明两者的肿瘤抑制功能及其机理,作者将综述近年来有关BRCA1和BRCA2在DNA损伤修复和转录调控中功能研究的最新进展。  相似文献   

10.
DNA repair in higher plants   总被引:9,自引:0,他引:9  
Numerous studies have demonstrated a requirement in plants for repair of DNA damage arising from either intrinsic or extrinsic sources. Investigations also have revealed a capacity for repair types of DNA damage, and conversely, identified mutants apparently defective in such repair. This article provides a concise overview of nuclear DNA repair mechanisms in higher plants, particularly those processes concerned with the repair of UV-induced lesions, and includes surveys of UV-sensitive mutants and genes implicated in DNA repair.  相似文献   

11.
泛素化修饰是蛋白质的一种重要的翻译后水平修饰,而且有着多种不同的生物学功能,对蛋白质的结构与功能、基因表达调控以及蛋白质-蛋白质/其它分子相互作用等多个方面有着重要的调控作用。Rad6即是酵母中的一种重要的泛素载体蛋白。Rad6通过泛素化修饰多种靶蛋白在DNA的损伤修复中发挥着重要作用。文章重点讨论了Rad6在DNA损伤修复方面的功能以及在正常情况下对染色质结构和基因表达调控的影响。  相似文献   

12.
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic “active” DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that “pruning” of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.  相似文献   

13.
14.
A number of DNA repair disorders are known to cause neurological problems. These disorders can be broadly characterised into early developmental, mid-to-late developmental or progressive. The exact developmental processes that are affected can influence disease pathology, with symptoms ranging from early embryonic lethality to late-onset ataxia. The category these diseases belong to depends on the frequency of lesions arising in the brain, the role of the defective repair pathway, and the nature of the mutation within the patient. Using observations from patients and transgenic mice, we discuss the importance of double strand break repair during neuroprogenitor proliferation and brain development and the repair of single stranded lesions in neuronal function and maintenance.  相似文献   

15.
内外环境中各种因素如电离辐射、紫外辐射、氧化剂、烷化剂等都可以造成白念珠菌DNA的损伤。如果DNA的损伤得不到有效的修复,便会造成突变。白念珠菌的突变率很高,但并不是所有DNA受损伤的细胞都会表现出突变型性状,这跟其自身的修复系统有很大关系,主要包括切除修复、错配修复及双链断裂修复等途径,使得绝大多数损伤能够及时修复,从而维持DNA的完整性与稳定性。白念珠菌DNA的损伤修复可能影响其适应性、药物敏感性等表型,从而给临床感染患者的治疗增加难度。本文主要从白念珠菌DNA损伤的产生,损伤信号的传导识别及损伤修复三方面综述目前的研究进展。  相似文献   

16.
AIMS: The aim of this study is to understand different adaptive responses in bacteria caused by three different mutagens, namely, an intercalating agent, an alkylating agent and a hydroxylating agent, and the repair systems according to the type of DNA damage, that is, DNA cross-linking and delayed DNA synthesis, alkylation and hydroxylation of DNA. A recombinant bioluminescent Escherichia coli, DPD2794 with the recA promoter fused to luxCDABE originating from Vibrio fischeri, was used in this study. METHODS AND RESULTS: The recombinant bioluminescent E. coli strain DPD2794, containing a recA promoter fused to luxCDABE from V. fischeri, was used to detect adaptive and repair responses to DNA damage caused by mitomycin C (MMC), and these responses were compared with those when the cells were induced with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and hydrogen peroxide (H2O2). The response ratio between the induced samples and that of the controls decreased suddenly when the induced culture was used in further inductions, indicating a possible adaptive response to DNA damage. DNA damage, or the proteins produced, because of MMC addition does not appear to be completely resolved until the seventh sub-culture after the initial induction, whereas simple damage, such as the base modification caused by MNNG and H2O2, appears to be repaired rapidly as evidenced by the quick recovery of sensitivity. CONCLUSIONS: These results suggest that it takes more time to completely repair DNA damage caused by MMC, as compared with a simple repair such as that required for the damage caused by MNNG and H2O2. Therefore, repair of the damage caused by these three mutagens is controlled by different regulons, even though they all induced the recA promoter. SIGNIFICANCE AND IMPACT OF THE STUDY: Using a bioluminescent E. coli harbouring a recA promoter-lux fusion, it was found that different adaptive responses and repair systems for DNA damage caused by several mutagens exists in E. coli.  相似文献   

17.
The history of the repair of damaged DNA can be traced to the mid-1930s. Since then multiple DNA repair mechanisms, as well as other biological responses to DNA damage, have been discovered and their regulation has been studied. This article briefly recounts the early history of this field.  相似文献   

18.
Exonuclease 1 (EXO1) is a multifunctional 5′ → 3′ exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions and biological roles of EXO1, its possible protective role against cancer and aging, and regulation of EXO1 by posttranslational modification.  相似文献   

19.
20.
Oxidative DNA damage has been implicated in mutagenesis, carcinogenesis and aging. Endogenous cellular processes such as aerobic metabolism generate reactive oxygen species (ROS) that interact with DNA to form dozens of DNA lesions. If unrepaired, these lesions can exert a number of deleterious effects including the induction of mutations. In an effort to understand the genetic consequences of cellular oxidative damage, many laboratories have determined the patterns of mutations generated by the interaction of ROS with DNA. Compilation of these mutational spectra has revealed that GC → AT transitions and GC → TA transversions are the most commonly observed mutations resulting from oxidative damage to DNA. Since mutational spectra convey only the end result of a complex cascade of events, which includes formation of multiple adducts, repair processing, and polymerase errors, it is difficult if not impossible to asses the mutational specificity of individual DNA lesions directly from these spectra. This problem is especially complicated in the case of oxidative DNA damage owing to the multiplicity of lesions formed by a single damaging agent. The task of assigning specific features of mutational spectra to individual DNA lesions has been made possible with the advent of a technology to analyze the mutational properties of single defined adducts, in vitro and in vivo. At the same time, parallel progress in the discovery and cloning of repair enzymes has advanced understanding of the biochemical mechanisms by which cells excise DNA damage. This combination of tools has brought our understanding of DNA lesions to a new level of sophistication. In this review, we summarize the known properties of individual oxidative lesions in terms of their structure, mutagenicity and repairability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号