首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aims: The aim of this study was to assess the exopolysaccharide (EPS) production capacities of various strains of Oenococcus oeni, including malolactic starters and strains recently isolated from wine . Methods and Results: Fourteen O. oeni strains displaying or not (PCR check on genomic DNA) the gtf gene generally associated with β‐glucan formation and ropiness were grown on grape juice medium, dialysed MRS‐derived medium or synthetic medium. The soluble polysaccharides (PS) remaining in the culture supernatant were alcohol precipitated, and their concentration was quantified by the phenol‐sulfuric method. Most of the O. oeni strains studied produced significant amounts of EPS, independently of their genotype (gtf+ or gtf?). The EPS production was not directly connected with growth and could be stimulated by changing the growth medium composition. The molecular weight distribution analysis and attempts to determine the PS chemical structure suggested that most strains produce a mixture of EPS. Conclusion: Oenococcus oeni strains recently isolated from wine or cultivated for many generations as a malolactic starter are able to produce EPS other than β‐glucan. Significance and Impact of the Study: These EPS may enhance the bacteria survival in wine (advantage for malolactic starters) and may contribute to the wine colloidal equilibrium.  相似文献   

2.
The biogenic amine-producing capability of several Oenococcus oeni strains, originally isolated from different Italian wines, was determined. The amine-producing capability was quali-quantitatively variable among the strains: out of the 44 strains investigated under optimal growth conditions, more than 60% were able to produce histamine, at concentrations ranging from 1.0 to 33 mg/L, and about 16% showed the additional capability to form both putrescine and cadaverine, to different extents and variable relative proportions. The amine-producing behavior of the strains was confirmed under stress culture conditions, while performing malolactic fermentation. In wine, one randomly chosen strain was very effective in forming putrescine from ornithine. The formation of putrescine from arginine by some strains has been also demonstrated. Consequently, O. oeni can really and significantly contribute to the overall biogenic amine content of wines. Practical consequences of these findings are discussed. Received: 2 August 2001 / Accepted: 28 August 2001  相似文献   

3.
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.  相似文献   

4.
Optimization of malolactic fermentation in wine depends mainly on better understanding of nitrogen nutritional requirements of Oenococcus oeni. Four widely used starter strains and the reference ATCC BAA-1163 strain were grown in media containing different N sources: free amino acids, oligopeptides (0.5–10 kDa) or polypeptides (> 10 kDa). Amino acid auxotrophies were determined by the single omission technique. The tested strains were indifferent to only two to four amino acids and two of the starter strains appeared to be particularly demanding. Nitrogen consumption was investigated and a significant level of nitrogen was consumed by O. oeni only in the free amino acid medium. In media containing complex nitrogen sources, a global balance above 5 mg N l−1 was enough to ensure biomass formation of all tested strains. Moreover, for all strains, bacterial growth yield was higher in the presence of nitrogen from peptides than that from free amino acids. However, no direct relationship between the bacterial growth level and the amount of nitrogen metabolized could be established. These findings were discussed in relation to the physiology of wine malolactic bacteria.  相似文献   

5.
The production of malolactic starter cultures requires the obtention of suitably large biomass at low-cost. In this work it was possible to obtain a good amount of biomass, at laboratory scale, of two enological strains of Lb. plantarum, by formulating a culture medium based on whey permeate (WP), a by-product of the cheese industry usually disposed as waste, when this was supplemented with yeast extract (Y), salts (S) and Tween 80 (T) (WPYST). Bacteria grown in WPYST medium exhibited good tolerance to stress conditions of synthetic wine (pH 3.5, ethanol 13% vol/vol). However, when WPYST was added with 8% vol/vol ethanol, cultures inoculated in synthetic wine, showed a lower viability and capacity to consume L-malic acid than when they were cultured in WPYST without ethanol. Subsequently, strains grown in WPYST were inoculated in sterile wine samples (final stage of alcoholic fermentation) of the red varietals Merlot and Pinot noir, and incubated at laboratory scale. Cultures from WPYST, inoculated in Pinot noir wine, showed a better performance than bacteria grown in MRS broth, and exhibited a consumption of L-malic acid higher than 90%. However, cultures from WPYST or from MRS broth, inoculated in sterile Merlot wine, showed a lower survival. This study allowed the formulation of a low-cost culture medium, based on a by-product of the food industry, which showed to be adequate for the growth of two enological strains of Lb. plantarum, suggesting their potentiality for application in the elaboration of malolactic starter cultures.  相似文献   

6.
Major commercially available strains for induction of malolactic fermentation in wine were examined for arginine metabolism in a resting cell system at wine pH with the aim of evaluating their ability to excrete and utilize citrulline, a precursor of carcinogenic ethyl carbamate (urethane). All strains tested excreted citrulline from arginine degradation. Citrulline was stored intracellularly during growth in arginine rich medium and was released upon lysis of the cells. All strains were found to degrade citrulline as a sole amino acid and some of them were able to reutilize previously excreted citrulline.  相似文献   

7.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

8.
Aims: The objective of this study was to investigate the presence of genes coding for enzymes of oenological relevance in wine Lactobacillus strains isolated from South African grape and wine samples during the 2001 and 2002 harvest seasons. Methods and Results: A total of 120 wine lactobacilli isolates belonging to Lactobacillus plantarum, Lactobacillus hilgardii, Lactobacillus brevis, Lactobacillus pentosus, Lactobacillus paracasei, Lactobacillus sakei and Lactobacillus paraplantarum were genetically screened for enzyme‐encoding genes using PCR with primers specific for β‐glucosidase, protease, esterase, citrate lyase and phenolic acid decarboxylase. The results of PCR screening showed that the Lactobacillus strains possessed different combinations of enzymes and that some strains did not possess any of the enzymes tested. Confirmation analysis with gene sequencing also showed high similarity of genes with those available in GenBank database. Conclusion: In this study, we have demonstrated the existence of genes coding for wine‐related enzymes in wine lactobacilli that could potentially hydrolyse wine precursors to positively influence wine aroma. Significance and Impact of the Study: An expansion of knowledge on the genetic diversity of wine‐associated lactic acid bacteria will enable the selection of novel malolactic fermentation starter cultures with desired oenological traits for the improvement of the organoleptic quality of the wine, and hence wine aroma.  相似文献   

9.
Five strains of Oenococcus oeni (syn. Leuconostoc oenos) under non-proliferating conditions were assessed for the performance of the malolactic fermentation in wine at various initial pH values, malic acid concentration and densities of cells. We succeeded in inducing the malolactic fermentation after inoculation of high densities of O. oeni G6 even in recalcitrant wines where the traditional malolactic fermentation was inhibited by adverse environmental conditions (low pH and high concentration of malic acid). Optimal degrading conditions in wine, under different physico-chemical environments, were determined in order to achieve rapid depletion of malic acid in red wine. Off-odour compounds were not formed under these conditions, suggesting an attractive alternative for wine production. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
Medium-chain fatty acids (C6 to C12), produced by yeast metabolism during alcoholic fermentation, are known to be inhibitory to lactic acid bacteria. The purpose of this work was to clarify the effect of both ethanol and decanoic and dodecanoic acids on the growth and malolactic activity of aLeuconostoc oenos strain isolated from Portuguese red wine. Ethanol in concentrations up to 12% had no significant effect on malolactic activity but strongly inhibited cell growth. The fatty acids decanoic acid, in concentrations up to 12.5 mg l–1, and, dodecanoic acid up to 2.5 mg l–1 seemed to act as growth factors stimulating also malolactic activity; at higher concentrations they exerted an inhibitory effect. We found clear pH dependence between pH 3.0 and pH 6.0, between decanoic acid concentration and its effect on malolactic activity, indicating that the undissociated molecule is the active form. At pH 3.0 the results can be explained by considering that fatty acids enter the cell as protonated molecules and dissociate in the cytoplasm due to the higher internal pH, leading to increased intracellular hydrogenous concentration. This may be the basis of two different effects that contribute to the observed inhibition: decrease in the intracellular pH and dissipation of the transmembrane proton gradient, thus inhibiting intracellular enzymes and ApH-dependent transport systems.  相似文献   

11.
Aims:  To characterize the genetic and phenotypic diversity of 135 lactic acid bacteria (LAB) strains isolated from Italian wines that undergone spontaneous malolactic fermentation (MLF) and propose a multiphasic selection of new Oenococcus oeni malolactic starters.
Methods and Results:  One hundred and thirty-five LAB strains were isolated from 12 different wines. On the basis of 16S amplified ribosomal DNA restriction analysis (ARDRA) with three restriction enzymes and 16S rRNA gene sequencing, 120 O. oeni strains were identified. M13-based RAPD analysis was employed to investigate the molecular diversity of O. oeni population. Technological properties of different O. oeni genotypes were evaluated in synthetic medium at increasing selective pressure, such as low pH (3·5, 3·2 and 3·0) and high ethanol values (10, 11 and 13% v/v). Finally, the malolactic activity of one selected strain was assessed in wine by malolactic trial in winery.
Conclusions:  The research explores the genomic diversity of wine bacteria in Italian wines and characterizes their malolactic metabolism, providing an efficient strategy to select O. oeni strains with desirable malolactic performances and able to survive in conditions simulating the harsh wine environment.
Significance and Impact of the Study:  This article contributes to a better understanding of microbial diversity of O. oeni population in Italian wines and reports a framework to select new potentially O. oeni starters from Italian wines during MLF.  相似文献   

12.
Malolactic fermentation (MLF), which improves organoleptic properties and biologic stability of some wines, may cause wine spoilage if uncontrolled. Bacteriocins were reported as efficient preservatives to control MLF through their bactericidal effect on malolactic bacteria. Leuconostoc mesenteroides subsp. cremoris W3 isolated from wine produces an inhibitory substance that is bactericidal against malolactic bacteria in model wine medium. Treatment of the culture supernatant of strain W3 with proteases eliminated the inhibitory activity, which proved that it is a true bacteriocin and we tentatively termed it mesentericin W3. The bacteriocin inhibited the growth of food-borne pathogenic bacteria such as Enterococcus faecalis, Listeria monocytogenes, and malolactic bacteria. It was active over a wide pH range and stable to organic solvents and heat. Mesentericin W3 was purified to homogeneity by a pH-mediated cell adsorption–desorption method, cation exchange, hydrophobic interaction, and reverse-phase chromatography. Matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy (MS) and partial amino acid sequence analysis revealed that mesentericin W3 was identical to mesentericin Y105.  相似文献   

13.
AIMS: Physiological comparison of two indigenous Oenococcus oeni strains, U1 and F3 isolated in the same area (Valpolicella, Italy) in order to select a performant starter for MLF in wine. METHODS AND RESULTS: Growth rate, sugar and malate metabolism in FT80 media at pH 5.3 and 3.5 were analysed. The amount of total protein synthesized and the level of expression of the small Hsp Lo18 were evaluated by radiolabelling and immunodetection experiments after heat (42 degrees C), acid (pH 3.5) and ethanol (12% v/v) stresses. Strain U1 showed significantly lower specific growth rate and growth yield in acid conditions than strain F3. However, strain U1 had a higher malate consumption capacity at pH 3.5 than strain F3, in relation with an higher malolactic activity determined on whole cells. Strain U1 exhibited about half the total protein synthesis level than strain F3, but both strains expressed Lo18 similarly. Evaluation of malolactic fermentation (MLF) performance by microvinification trials was carried out. Strain U1 was able to complete MLF, whereas strain F3 degraded malic acid partially when inoculated in Amarone wine. CONCLUSIONS: Considering its performances in microvinifications experiments, strain U1 could be a good candidate for malolactic starter as an alternative to deficient commercial starters.  相似文献   

14.
Microbiology of the malolactic fermentation: Molecular aspects   总被引:4,自引:0,他引:4  
Abstract Malolactic fermentation conducted by lactic acid bacteria follows alcoholic fermentation during winemaking, and several positive effects make it indispensable for most wines. Research has focused on the growth and physiology of lactic acid bacteria in wine; resulting in the design of malolactic starter cultures. Future work on these starters will concentrate on aromatic changes as additional criteria for strain selection. Although the main features of the malolactic enzyme and its gene are known, the detailed mechanism of the malolactic reaction remains unclear. Cloning and expression of this activity in enological strains of Saccharomyces cereuisiae might be one of the next most important advances in the control of malic acid degradation in wine.  相似文献   

15.
Conversion of fatty acids by Bacillus sphaericus-like organisms   总被引:1,自引:0,他引:1  
Bacillus sphaericus species are mesophilic round-spored organisms that readily utilize fatty acid-based surfactants during growth, but their ability to modify fatty acids is unknown. Among 57 B. sphaericus-like strains tested for fatty acid transformation activity in Wallen fermentation (WF) medium, ten converted oleic acid to a new product determined by gas chromatography – mass spectrometry (GC-MS) to be 10-ketostearic acid (10-KSA). Additionally, a few other strains converted ricinoleic acid and linoleic acid to new products that remain to be characterized. Unlike most microbial hydrations of oleic acid, which produce a mixture of 10-KSA and 10-hydroxystearic acid, the conversion of oleic acid by B. sphaericus strains was unique in that 10-KSA was the sole reaction product. By replacing dextrose with sodium pyruvate in WF and adjusting to pH 6.5, conversion of oleic acid to 10-KSA by strain NRRL NRS-732 was improved from about 11% to more than 60%. Using the defined optimal conditions, the conversion reaction was scaled up in a stirred-batch reactor by using technical-grade oleic acid as substrate. This is the first report on the characterization of fatty acid conversions by B. sphaericus species. Received: 17 December 2001 / Accepted: 17 January 2002  相似文献   

16.
Leuconostoc oenos and malolactic fermentation in wine: a review   总被引:1,自引:0,他引:1  
This review article summarizes the state of the art on Leuconostoc oenos, the bacteria responsible for malolactic fermentation in wine. Both basic and practical aspects related to the metabolism of this microorganism and malolactic fermentation in general are critically reviewed. The former examines the role of genetics for the identification and classification of L. oenos and energetic mechanisms on solute transport (malic and lactic acid). The latter includes practical information on biomass production, optimal growth conditions and stress factors, which are important in growth optimization of malolactic starter cultures. Extensive data and references on the effect of malolactic fermentation on wine composition and sensory analysis are also included. Received 06 May 1999/ Accepted in revised form 13 July 1999  相似文献   

17.
Lactic acid bacteria in the quality improvement and depreciation of wine   总被引:36,自引:0,他引:36  
The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 106CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteri a, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet c ompletely elucidated . Molecular biology has provided some explanations for the behaviour and the metabolism of bacteria in wine. New tools are now available to detect the presence of desirable and undesirable strains. Even if much remains unknown, winemakers and oenologists can nowadays better control the process. By acting upon the diverse microflora and grape musts, they are more able to produce healthy and pleasant wines.  相似文献   

18.
Hydroxycinnamic acids and their derivatives occur naturally in grape juice and wine. To assess their potential as natural preservatives the effect of caffeic, coumaric and ferulic acids on the growth of three wine-spoilage strains of Lactobacillus collinoides and one of Lact. brevis was studied in acid tomato broth containing 5% ethanol at pH 4.8. At concentrations of 500 and 1000 mg l-1, all three compounds markedly inhibited growth; coumaric and ferulic acids were more effective than caffeic acid. At a concentration of 100 mg l-1, all compounds stimulated growth. In general, the strains of Lact. collinoides were more susceptible both to inhibition and stimulation by the hydroxycinnamic acids than was the strain of Lact. brevis. The possible influence of hydroxycinnamic acids on the malolactic fermentation of wine is discussed.  相似文献   

19.
Thirty-two strains were isolated from spoiled port wines, from musts and from various styles of young, Northeastern Portuguese red table wines that had undergone spontaneous malolactic fermentation. Comparison of their SDS-PAGE whole-cell protein patterns with an SDS-PAGE database of lactic acid bacteria indicated that the isolates were members of the species Leuconostoc oenos or Lactobacillus paracasei subsp. paracasei. The latter were found in low acidity table wines and in port wine. The isolation of Lactobacillus paracasei strains from wines indicates the importance of using known strains for wine deacidification because spontaneous malolactic fermentation of table wines can occur from an indigenous flora, adapted to the particular composition of the wine.  相似文献   

20.
AIMS: To study the population dynamics of indigenous malolactic bacteria in a Greek winery and to examine their potential to produce detrimental levels of biogenic amines (BA) under winemaking conditions. METHODS AND RESULTS: Although the wines studied were of different vintage, grape variety and enological characteristics, molecular typing of malolactic bacteria revealed only a low number of strains within the single-species populations of Oenococcus oeni that developed during spontaneous fermentations. Strain MF1, originating primarily from the vineyards surrounding the winery invariably predominated in almost all samples. HPLC analysis showed a slight increase in the BA, putrescine, tyramine and phenylethylamine after malolactic conversion, while histamine, methylamine and ethylamine remained unaffected. No correlation could be established between the BA profiles and the bacterial compositions or the amino acid concentrations in wine samples studied. CONCLUSIONS: A certain regional bacterial flora is established in the winery that prevails in spontaneous malolactic fermentations (MLF) irrespective of the wine characteristics. In all cases, the BA content of the wines after malolactic conversion was within enologically acceptable levels. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the malolactic bacteria occurring naturally in spontaneous MLF in Greek red wines and a preliminary assessment of their impact on wine safety in relation to BA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号