首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Citric acid production from cellobiose by Aspergillus niger was studied by a semi-solid culture method using bagasse as a carrier. From the parental strain Yang no. 2, mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glucose as a carbon source were induced. The representative mutant strain M155 was selected and subjected to further mutation. The new series of mutant strains showing resistance to DG on minimal medium containing cellobiose as a carbon source was induced, and among them the best mutant strain C192 showed higher citric acid productivity than Yang no. 2 in semi-solid culture when glucose was used as a carbon source. Moreover, in semi-solid culture, the strain C192 produced 49.6 g/l of citric acid, 1.6 times as much citric acid as Yang no. 2 produced, from 100 g cellobiose/l and showed enhanced -glucosidase production. In shake culture, the extracellular -glucosidase activity of C192 was higher than that of Yang no. 2 when not only cellobiose but also glucose and glycerol, catabolite repressors, were used as a carbon source. These results indicate that mutant strains such as C192 are insensitive to catabolite repression. Correspondence to: S. Usami  相似文献   

2.
Summary Many mutant strains showing resistance to 2-deoxy-d-glucose (DG) on minimal medium containing glycerol as a carbon source were induced from Aspergillus niger WU-2223L, a citric acid-producing strain. The mutant strains were classifiable into two types according to their growth characteristics. On the agar plates containing glucose as a sole carbon source, mutant strains of the first type showed good growth irrespective of the presence or absence of DG. When cultivated in shake cultures, some strains of the first type, such as DGR1–2, showed faster glucose consumption and growth than strain WU-2223L. The period for citric acid production shortened from 9 days for strain WU-2223L to 6–7 days for these mutant strains. The levels and yields of citric acid production of the mutant strains were almost the same as those of strain WU-2223L. The mutant strains of the second type, however, showed very slow or no growth on both the agar plates containing glucose and fructose as sole carbon sources. In shake cultures, mutant strains such as DGR2-8 showed decreased glucose consumption rates, resulting in very low production of citric acid.  相似文献   

3.
Summary A polysaccharide producing strain ofBacillus licheniformis was isolated from exudate of raffia palm,Raffia vinifera. The optimum conditions for growth and polysaccharide production have been investigated and established. No appreciable polysaccharide was formed on glucose. It grew best in Czapek-Dox media with sucrose as the carbon source. The polysaccharide has been characterized as a heteropolymer containingd-glucose,d-mannose andd-xylose.  相似文献   

4.
From 22,791 mutants of a cellulase hyper-producing strain of Trichoderma reesei (Hypocrea jecorina), ATCC66589, as the parent, we selected two mutants, M2-1 and M3-1, that produce cellulases in media containing both cellulose and glucose. The mutation enabled the mutants to produce cellulases, which were measured as p-nitrophenyl β-d-lactopyranoside-hydrolyzing activities, in media with glucose as a sole carbon source, although M2-1 exhibited different sensitivities to glucose from M3-1. When the mutants were grown for 8 days on a medium with cellulose as a sole carbon source, the filter-paper-degrading activities (FPAs) per gram of cellulose were 257 and 281 U for M2-1 and M3-1, respectively, values that were 1.1–1.2 times higher than that of the parental strain. Cellulase production by M2-1 and M3-1 on a medium with a continuously fed mixture of glucose and cellobiose resulted in 214 and 210 U of FPA/gram carbon sources, respectively, whereas less efficient production (140 U of FPA/gram carbon source) was achieved by the parental strain. The improved cellulase productivity of the mutants allows us to use glucose as a carbon source for efficient on-site production of cellulases with quality/quantity-controlled feeding of soluble carbon sources and inducers.  相似文献   

5.
The newly isolatedStreptomyces sp. CCM 4102 strain produced a high level of intracellular glucose isomerase in the media containingd-xylose as inducer of the enzyme, corn-steep liquor, yeast extract and magnesium sulfate. The enzyme synthesis was repressed byd-glucose andd-fructose. The strain did not require cobalt ions for enzyme production.  相似文献   

6.
The mutant R33 of the obligatory aerobic yeastRhodotorula glutinis exhibited a defect ind-glucose uptake. Detailed kinetic studies ofd-glucose andd-fructose transport in wild-type and mutant strains provided evidence for the existence in the plasma membrane of a carrier specific for fructose. The transport ofd-fructose in the mutant exhibited saturation kinetics up to 1 mmol/Ld-fructose; at higher concentrations the rate ofd-fructose uptake decreased. In the wild-type strain biphasicd-fructose uptake kinetics were observed; the low-affinity component was not found in the mutant, but the high-affinity transport system persisted. During the exponential phase of growth (ond-glucose) the high-affinityd-fructose system was repressed in the wild-type strain. Mutual competition betweend-fructose andd-glucose as well as the pH dependence of transport of the two hexoses further supported the following conclusion: In the wild-type strain,d-fructose is taken up both by the specific fructose carrier (K T=0.22 mmol/L) and the glucose carrier (K T=9.13 mmol/L). The former does not translocated-glucose, the latter is damaged by the mutation. Finally H+ co-transport and plasma membrane depolarization induced by the onset ofd-fructose transport indicated that the fructose carrier is an H+ symporter.  相似文献   

7.
Summary A number of 2-deoxy-d-glucose (2-DOG) resistant mutants exhibiting resistance to glucose repression were isolated from variousSaccharomyces yeast strains. Most of the mutants isolated were observed to have improved maltose uptake ability in the presence of glucose. Fermentation studies indicated that maltose was taken up at a faster rate and glucose taken up at a slower rate in the mutant strains compared to the parental strains, when these sugars were fermented together. When these sugars were fermented separately, only the 2-DOG resistant mutant obtained fromSaccharomyces cerevisiae strain 1190 exhibited alterations in glucose and maltose uptake compared to the parental strain. Kinetic analysis of sugar transport employing radiolabelled glucose and maltose indicated that both glucose and maltose were transported with higher rates in the mutant strain. These results suggested that the high affinity glucose transport system was regulated by glucose repression in the parental strain but was derepressed in the mutant.  相似文献   

8.
Corynebacterium glutamicum strains CRA1 and CRX2 are able to grow on l-arabinose and d-xylose, respectively, as sole carbon sources. Nevertheless, they exhibit the major shortcoming that their sugar consumption appreciably declines at lower concentrations of these substrates. To address this, the C. glutamicum ATCC31831 l-arabinose transporter gene, araE, was independently integrated into both strains. Unlike its parental strain, resultant CRA1-araE was able to aerobically grow at low (3.6 g·l−1) l-arabinose concentrations. Interestingly, strain CRX2-araE grew 2.9-fold faster than parental CRX2 at low (3.6 g·l−1) d-xylose concentrations. The corresponding substrate consumption rates of CRA1-araE and CRX2-araE under oxygen-deprived conditions were 2.8- and 2.7-fold, respectively, higher than those of their respective parental strains. Moreover, CRA1-araE and CRX2-araE utilized their respective substrates simultaneously with d-glucose under both aerobic and oxygen-deprived conditions. Based on these observations, a platform strain, ACX-araE, for C. glutamicum-based mixed sugar utilization was designed. It harbored araBAD for l-arabinose metabolism, xylAB for d-xylose metabolism, d-cellobiose permease-encoding bglF 317A , β-glucosidase-encoding bglA and araE in its chromosomal DNA. In mineral medium containing a sugar mixture of d-glucose, d-xylose, l-arabinose, and d-cellobiose under oxygen-deprived conditions, strain ACX-araE simultaneously and completely consumed all sugars.  相似文献   

9.
Recently, we reported on the construction of a whole-cell biotransformation system in Escherichia coli for the production of d-mannitol from d-fructose (Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339). Supplementation of this strain with extracellular glucose isomerase resulted in the formation of 800 mM d-mannitol from 1,000 mM d-glucose. Co-expression of the xylA gene of E. coli in the biotransformation strain resulted in a d-mannitol concentration of 420 mM from 1,000 mM d-glucose. This is the first example of conversion of d-glucose to d-mannitol with direct coupling of a glucose isomerase to the biotransformation system.  相似文献   

10.
Corynebacterium glutamicum was metabolically engineered to broaden its substrate utilization range to include the pentose sugar l-arabinose, a product of the degradation of lignocellulosic biomass. The resultant CRA1 recombinant strain expressed the Escherichia coli genes araA, araB, and araD encoding l-arabinose isomerase, l-ribulokinase, and l-ribulose-5-phosphate 4-epimerase, respectively, under the control of a constitutive promoter. Unlike the wild-type strain, CRA1 was able to grow on mineral salts medium containing l-arabinose as the sole carbon and energy source. The three cloned genes were expressed to the same levels whether cells were cultured in the presence of d-glucose or l-arabinose. Under oxygen deprivation and with l-arabinose as the sole carbon and energy source, strain CRA1 carbon flow was redirected to produce up to 40, 37, and 11%, respectively, of the theoretical yields of succinic, lactic, and acetic acids. Using a sugar mixture containing 5% d-glucose and 1% l-arabinose under oxygen deprivation, CRA1 cells metabolized l-arabinose at a constant rate, resulting in combined organic acids yield based on the amount of sugar mixture consumed after d-glucose depletion (83%) that was comparable to that before d-glucose depletion (89%). Strain CRA1 is, therefore, able to utilize l-arabinose as a substrate for organic acid production even in the presence of d-glucose.  相似文献   

11.
The nameLeclercia adecarboxylata is proposed for a group of the family Enterobacteriacae previously known asEscherichia adecarboxylata. Leclercia adecarboxylata can be phenotypically differentiated from all other species of Enterobacteriaceae. The members of this species are positive for motility, indole production, methyl red, growth in the presence of KCN, malonate, beta-galactosidase, beta-xylosidase, esculin hydrolysis, gas production fromd-glucose, and acid production fromd-cellobiose,d-lactose, melibiose,l-rhamnose, adonitol,d-arabitol, dulcitol, and salicin; the strains were negative for Voges-Proskauer, citrate (Simmons), H2S (Kligler), lysine and ornithine decarboxylases, arginine dihydrolase, phenylalanine deaminase, gelatinase, DNase, Tween-80 hydrolysis, and acid production from myoinositol and alpha-methyl-d-glucoside. Fermentation ofd-raffinose,d-sucrose, andd-sorbitol is variable with strains. DNA relatedness of 11 strains ofL. adecarboxylata to three strains including the type strain of this species averaged 80% in reactions at 65°C. DNA relatedness to other species in Enterobacteriaceae was 2%–32%, indicating that this species was placed in a new genusLeclercia gen. nov. The type strain ofL. adecarboxylata is ATCC 23216.  相似文献   

12.
Mycelial growth of an isolate ofT. bakamatsutake was tested in media with C/N ratio ranging from 0 to 50 and with 32 carbon and 12 nitrogen sources. The isolate grew best at the C/N ratio of 30. It utilized the monosaccharidesd-glucose,d-mannose, andd-fructose, the disaccharide trehalose, and polysaccharide pectin among the carbon sources; and yeast extract,l-glutamic acid, and ammonium compounds among the nitrogen sources. The growth of ten isolates and secretion of gluconic and oxalic acids were compared ind-glucose, trehalose, and pectin media. The utilization ofd-glucose, trehalose, and pectin differed among the ten isolates, but all the isolates secreted gluconic acid in thed-glucose media and oxalic acid in the pectin media.  相似文献   

13.
Various strains of Aspergillus niger were screened for extracellular glucose oxidase (GOD) activity. The most effective producer, strain FS-3 (15.9 U mL–1), was mutagenized using UV-irradiation or ethyl methane sulfonate. Of the 400 mutants obtained, 32 were found to be resistant to 2-deoxy d-glucose, and 17 of these exhibited higher GOD activities (from 114.5 to 332.1%) than the original FS-3 strain. Following determination of antifungal resistance of the highest producing mutants, four mutants were selected and used in protoplast fusions in three different intraspecific crosses. All fusants showed higher activities (from 285.5 to 394.2%) than the original strain. Moreover, of the 30 fusants isolated, 19 showed higher GOD activity than their corresponding higher-producing parent strain.  相似文献   

14.
Welan gum is a microbial polysaccharide produced by Alcaligenes sp. CGMCC2428 that has d-glucose, d-glucuronic acid, d-glucose, and l-rhamnose as the main structural unit. The biosynthetic pathway of sugar nucleotides essential for producing welan gum in this strain was established in the following ways: (1) the detection of the presence of several intermediates and key enzymes; (2) the analysis of the response upon addition of precursors to the culture medium; (3) the correlation of the activities between several key enzymes with the yields of welan gum. With addition of 200-μM glucose-6-phosphate and fructose-6-phosphate, the production of welan gum was improved by 18%. The activities of phosphoglucomutase, phosphomannose isomerase, UDP-glucose pyrophosphorylase, and dTDP-glucose pyrophosphorylase, correlated well with the yields of welan gum. According to these findings, the biosynthetic pathway was proposed to involve the metabolism of glucose via two discrete systems. The first involves conversion of glucose to glucose-6-phosphate, with further reactions producing glucose-1-phosphate and fructose-6-phosphate, which are metabolized to the nucleotide sugar precursors of welan gum. The second system involves metabolism of glucose to synthesize the basic structural skeleton of the cell via central metabolic pathways, including the Entner–Doudoroff pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle.  相似文献   

15.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

16.
To develop a new enzymatic xylose-to-xylitol conversion, deeper knowledge on the regulation of xylose reductase (XR) is needed. To this purpose, a new strain of Debaryomyces hansenii (UFV-170), which proved a promising xylitol producer, was cultivated in semi-synthetic media containing different carbon sources, specifically three aldo-hexoses (d-glucose, d-galactose and d-mannose), a keto-hexose (d-fructose), a keto-pentose (d-xylose), three aldo-pentoses (d-arabinose, l-arabinose and d-ribose), three disaccharides (maltose, lactose and sucrose) and a pentitol (xylitol). The best substrate was lactose on which cell concentration reached about 20 g l−1 dry weight (DW), while the highest specific growth rates (0.58–0.61 h−1) were detected on lactose, d-mannose, d-glucose and d-galactose. The highest specific activity of XR (0.24 U mg−1) was obtained in raw extracts of cells grown on d-xylose and harvested in the stationary growth phase. When grown on cotton husk hemicellulose hydrolyzates, cells exhibited XR activities five to seven times higher than on semi-synthetic media.  相似文献   

17.
Sun M  Liu X 《Mycopathologia》2006,161(5):295-305
Thirty-three carbon sources were evaluated for their effects on spore germination, hyphal growth and sporulation of 11 fungal biocontrol agents, i.e. the nematophagous fungi Paecilomyces lilacinus, Pochonia chlamydosporia, Hirsutella rhossiliensis, H. minnesotensis and Arkansas Fungus 18, the entomopathogenic fungi Lecanicillium lecanii, Beauveria bassiana and Metarhizium anisopliae, and the mycoparasitic fungus Trichoderma viride. Variations in carbon requirements were found among the fungal species or strains tested. All strains studied except for T. viride grew on most carbon sources, although B. bassiana had more fastidious requirements for spore germination. Monosaccharides and disaccharides were suitable for fungal growth. For most isolates, d-glucose, d-mannose, sucrose and trehalose were superior to pectin and soluble starch among the polysaccharides and lactic acid among the organic acids. Both ethanol and methanol could accelerate growth of most isolates but not biomass. d-mannose, d-fructose and d-xylose were excellent carbon sources for sporulation, while d-glucose, sucrose, cellobiose, trehalose, chitin, dextrin, gelatin and lactic acid were better for some isolates. Neither sorbic acid nor linoleic acid could be utilized as a single carbon source. These findings provided a better understanding of the nutritional requirements of different fungal biocontrol agents that can benefit the mass production process.  相似文献   

18.
Microbial production of d-hexosaminate was examined by means of oxidative fermentation with acetic acid bacteria. In most strains of acetic acid bacteria, membrane-bound d-glucosamine dehydrogenase (synonymous with an alternative d-glucose dehydrogenase distinct from quinoprotein d-glucose dehydrogenase) oxidized d-hexosamines to the corresponding d-hexosaminates in a stoichiometric manner. Conversion of d-hexosamines to the corresponding d-hexosaminates was observed with growing cells of acetic acid bacteria, and d-hexosaminate was stably accumulated in the culture medium even though d-hexosamine was exhausted. Since the enzyme responsible is located on the outer surface of the cytoplasmic membrane, and the enzyme activity is linked to the respiratory chain of the organisms, resting cells, dried cells, and immobilized cells of acetic acid bacteria were effective catalysts for d-hexosaminate production. d-Mannosaminate and d-galactosaminate were also prepared for the first time by means of oxidative fermentation, and three different d-hexosaminates were isolated from unreacted substrate by a chromatographic separation. In this paper, d-hexosaminate production by oxidative fermentation carried out mainly with Gluconobacter frateurii IFO 3264 is exemplified as a typical example.  相似文献   

19.
Uptake activities for both glycerol andl-α-glycerol-3-phosphate inPseudomonas aeruginosa strain PAO were induced during growth in the presence of either glycerol ordl-α-glycerol-3-phosphate. Succinate, malate, and glucose exerted catabolite repression control over induction of both uptake activities. Glycerol uptake exhibited saturation kinetics with an apparentK m of 13 μM and aV max of 73 nmol/min/mg cell protein. The uptake ofl-α-glycerol-3-phosphate was inhibited by the presence of glycerol, but uptake of glycerol was unaffected by exogenousl-α-glycerol-3-phosphate. Uptake of both substrates by starved, induced cells was stimulated by exogenously providedd-glucose, 2-deoxy-d-glucose,d-gluconate, orl-malate. In a mutant deficient in gluconate uptake and glucose dehydrogenase (EC 1.1.1.47) activities,d-glucose, 2-deoxy-d-glucose, andd-gluconate exerted little or no effect on the uptake of either substrate, butl-malate markedly stimulated the processes. The uptake of both glycerol andl-α-glycerol-3-phosphate, by either starved or unstarved cells, was inhibited by a number of metabolic poisons, including arsenate, azide, cyanide, 2,4-dinitrophenol, and iodoacetate.  相似文献   

20.
 The strain Penicillium purpurogenum P-26 was subjected to UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine treatment and mutants were isolated capable of synthesizing cellulase under the conditions of a high concentration of glucose. Initially mutants resistant to catabolite repression by 2-deoxy-D-glucose were isolated on Walseth’s cellulose/agar plates containing 15–45 mM 2-deoxy-D-glucose. These mutants were again screened for resistance to catabolite repression by glycerol or glucose on Walseth’s cellulose/agar plates containing 50 g/l glycerol or 50 g/l glucose respectively. Four mutants with different sizes of clearing zone on Walseth’s cellulose/agar plates containing 50 g/l glucose were selected for flask culture. Among them, the mutant NTUV-45-4 showed better carboxymethylcellulase activity in flask culture containing 1% Avicel plus 3% glucose than did the parental strain. Received: 9 October 1995/Received revision: 27 November 1995/Accepted: 8 January 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号