首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High levels of radioimmunoassayable PGE2 were measured in the perfusate of isolated kidneys. Indomethacin inhibited PGE2 release in this system. Small reductions in the pressor effects of norepinephrine (NE) were associated with increasing perfusate levels of PGE2; a large increase in the pressor effect of NE followed additions of indomethacin and reductions in perfusate PGE2 levels. A marked reduction in pressor responsiveness to angiotensin II (AII) was measured in the isolated kidney which could not be prevented or reversed by indomethacin. It is believed that tachyphylaxis was responsible for the marked reduction in pressor responsiveness to AII and that this is independent of alterations in prostaglandin metabolism. However prostaglandins appeared to modulate the pressor effects of AII as they did NE in the isolated perfused kidney.  相似文献   

2.
The activity of prostaglandins (PG) in producing vascular permeability was quantitated by dye extraction method in skin of anaesthetized rabbits. PGE1 and PGE2 (0.01–10 μg) produced increase in vascular permeability. Activity was approximately equal to that of histamine (Hist) and 1/20 of that of bradykinin (BK) on a weight basis. The activity of PGF1 and PGF2 was only 1/20 of that of PGE1 or PGE2.

In spite of the relatively low potency of PGE1 and PGE2 in the rabbit, near threshold doses (0.1 or 1 μg) of PGE2 could potentiate permeability responses to bradykinin (0.1 μg) by 10 or 100-fold, respectively. Equivalent doses (0.1 or 1 μg) of histamine could not potentiate the bradykinin responses. Arachidonic acid (AA) at 1 μg, produced a 10-fold potentiation in the permeability response to bradykinin (0.1 μg). Pretreatment of the rabbits with indomethacin (20 mg/kg, i.p.) reduced the responses of BK (0.1 μg) + AA (1 μg) down to a similar magnitude of those seen with bradykinin alone. However, indomethacin did not block responses to either, BK alone, BK + PGE2, or BK + Hist. Various doses (1, 10, 100 and 300 μg) of arachidonic acid alone also produced increase in cutaneous vascular permeability, although its potency was only 1/3–1/8 of that of PGE2. This activity of arachidonic acid was attributed in part to its bioconversion to PGE2, since its activity was significantly reduced by the prostaglandin antagonist, diphloretin phosphate (DPP) (60 mg/kg, i.v.) and by indomethacin (20 mg/kg, i.p.), which blocks conversion of arachidonic acid to prostaglandins. Arachidonic acid may owe some of its permeability increaseing effects to histamine release, since its effects were also reduced by the anti-histamine, pyrilamine (2.5 mg/kg, i.v.).  相似文献   


3.
The mechanism by which pentobarbital anesthesia causes increases in plasma renin activity (PRA) was examined in dogs infused with either propranolol or indomethacin, an inhibitor of prostaglandin synthetase. Infusion of propranolol at 1 mg/kg, (I.V.) followed by 0.6–0.7 mg/kg/hr decreased PRA from 6.98±2.49 ng/m1/hr during control periods to 1.58±0.79 ng/m1/hr 30 minutes after the injection of propranolol (P<0.025). Subsequent induction of anesthesia with sodium pentobarbital caused PRA to rise to 3.87±0.93 ng/m1/hr in 30 minutes. (P<0.01). Plasma potassium concentration decreased from 4.6±0.2 mEq/L to reach 4.0±0.1 mEq/L 30 minutes after induction of anesthesia (P<0.005). Infusion of indomethacin at 5 mg/kg, (I.V.) followed by 1.5 ? 3.1 mg/kg/hr into conscious dogs did not decrease PRA. In contrast to the report by Montgomery et al (Fed. Proc. 36: 989, 1977), we found that the increase in PRA after pentobarbital anesthesia could not be blocked by indomethacin. PRA was 5.3±1.2 ng/m1/hr(M ± SEM) during control periods and was 4.7±1.4 ng/m1/hr 30 minutes after the infusion of indomethacin (P<0.1). PRA increased to 10.9±2.3 ng/m1/hr, 9.2±2.2 ng/m1/hr, and 7.7±1.7 ng/m1/hr at 5, 15 and 30 minutes, respectively, after the administration of pentobarbital (P<0.005, P<0.025, P<0.05). PRA declined to 4.2±1.3 ng/m1/hr 60 minutes after pentobarbital anesthesia (P<0.1). It is concluded that the mechanism by which pentobarbital causes increases in PRA is independent of prostaglandins.  相似文献   

4.
Aldosterone was isolated from hamster adrenal cells and was identified by high performance liquid chromatography and thermospray mass spectroscopy analysis. Basal outputs from adrenal cell suspensions were of the same order of magnitude, 8.4 ± 1.9 ng and 8.0 ± 0.7 ng/2 h/50,000 cells, for aldosterone and corticosteroid, respectively. The outputs of aldosterone and corticosteroid increased with K+ concentrations to reach maxima of 3.3- and 1.6-fold at 10 meq/l of K+. AngiotensinII (AII) produced dose-dependent increases in aldosterone and corticosteroid outputs with maxima of 3- and 4-fold, respectively. In contrast, ACTH induced relatively no changes in aldosterone output, whereas dose-dependent increases in corticosteroid output were found. In time study experiments, with 10−8 M AII, aldosterone and corticosteroid outputs were maximally increased after 1 h (6-fold) and 3 h (1.8-fold), respectively. At 10−8 M, ACTH had a small stimulatory effect on aldosterone output after 6 h, whereas it provoked a gradual increase in corticosteroid output (up to 7-fold after 8 h of incubation). The effects of AII and ACTH on adrenal cytochrome P-45011β involved in the last steps of aldosterone formation were evaluated by c combined in vivo andin vitro experiments. The P-45011β mRNA level was increased by a low sodium intake but not by a 24 h ACTH stimulus. These results taken together indicate that ACTH and AII differentially regulate P-45011β. It is postulated that these two regulatory peptides regulate the hamster adrenal steroidogenesis by different P-450 genes.  相似文献   

5.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

6.
Isolated rat hepatocytes posses a saturable glucocorticoid uptake system with high affinity (Kd value = 2.8 ± 0.7 × 10−8 M; 318,000 ± 80,000 binding sites per cell; 317 fmol/mg protein). The initial rates of uptake decrease by about 30–40% if the cells are incubated simultaneously with [3H]corticosterone and either SH-reagents (N-ethylmaleimide and p-chloromercuriphenylsulphonate, 1 mM), metabolic inhibitors (2,4-dinitrophenol, 1 mM; and antimycin, 0.1 mM) or the Na+/K+-ATPase-inhibitors, ouabain and quercetine. These Na+/K+-ATPase-blockers exert half-maximal inhibition at 3 × 10−7 and 3 × 10−6 M, respectively. A slight increase in K+ concentration and a corresponding decrease in Na+ in the medium leads to a significant reduction in the initial uptake rate. The uptake system from the rat hepatocytes shows a clear steroid specificity, being different from the intracellular receptor. Corticosterone and progesterone are the strongest competitors, cortisol, 5- and 5β-dihydrocorticosterone, 11-deoxycorticosterone, cortisone and testosterone have an intermediate effect and only weak competition is exerted by dexamethasone and by the mineralocorticoid, aldosterone. Estradiol and estrone sulphate as well as the synthetic glucocorticoid triamcinolone acetonide are unable to inhibit initial corticosterone uptake.  相似文献   

7.
The venoconstrictor effect of Angiotensin II (Ang II) was investigated in the rat mesenteric venules and portal vein. Mesenteric venules were perfused at a constant rate and reactivity to Ang II (0.1 nmol) was evaluated as changes in the perfusion pressure. Rings of portal vein were mounted in organ baths and curves to Ang II (0.1–100 nmol/L) were generated. In venules, Ang II-contraction (10.6 ± 1.1 mmHg) was abolished by losartan (0.9 ± 0.3 mmHg*), reduced by PD 123,319 (5.8 ± 0.9 mmHg*), increased by l-NAME (16.5 ± 1.8 mmHg*) and not altered by indomethacin. In portal veins, curves to Ang II (−log EC50: 8.9 ± 0.1 mol/L) were shifted to the right by losartan (−log EC50: 7.5 ± 0.1 mol/L*) and by PD 123,319 (−log EC50: 8.0 ± 0.1 mol/L*). l-NAME increased the maximal response to Ang II (Emax: 0.91 ± 0.1 g versus 1.62 ± 0.3 g*) and indomethacin had no effect. In conclusion, Ang II induces venoconstriction by activating AT1 and AT2 receptors. Data obtained with l-NAME provide evidence that the basal nitric oxide release from the endothelium of the venous system can modulate the Ang II-induced venoconstriction.  相似文献   

8.
The influence of transposing the C-15 hydroxy group of prostaglandin E1 methyl ester (PGE1ME) on gastric antisecretory and antiulcer actions was investigated. The compound (±)15-deoxy- 16,β-hydroxy PGE1ME (SC-28904) was equipotent to the reference standard PGE1ME in suppressing histamine-stimulated gastric secretion in the Heidenhain pouch (HP) dog. In contrast to PGE1ME, SC-28904 was longer acting when administered intravenously and also showed significant oral activity in the histamine-stimulated gastric fistula dog. SC-28904 was also equipotent to PGE1ME (range of active doses of 0.5 to 5.0 mg/kg, s.c.) in inhibiting forced-exertion gastric ulceration in rats.

The compound (±)15-deoxy- 17,β-hydroxy PGE1ME (SC-30693) was an inactive antisecretory agent in the dog at the 1.0 mg/kg i.v. bolus dose. This dose was 100 times greater than the active antisecretory dose of PGE1ME. Likewise, SC-30693, when administered subcutaneously at a 5.0 mg/kg dose, was also totally inactive in preventing gastric ulcers induced by forced exertion in rats.

The important implications of this work are that some of the receptor sites for the PGE1 molecule could easily accommodate the side chain hydroxy group either in the C-15 or C-16 position. Moreover, the hydroxy group in the latter position significantly improved the biological activity of PGE1ME.  相似文献   


9.

1. 1. (Mg2+ + Ca2+) ATPases of microsomal and synaptic membrane preparations from immature and adult rat brain were activated by calcium (0.1–10 μM), maximal activation was found at 3 μM. The increase in (Mg2+ + Ca2+) ATPase seen during development was greatest in the synaptic membrane preparations.

2. 2. At 37°C both Na+ or K+ at concentrations higher than 30 mM inhibited the microsomal Mg2+ ATPase, but the (Mg2+ + Ca2+) ATPase was stimulated by both Na+ and K+. Synaptic membrane Mg2+ ATPase was inhibited by concentrations higher than 100 mM K+; Na+ however stimulated this enzyme at all concentrations. Much of this Na+ stimulated activity was ouabain sensitive. Synaptic membrane (Mg2+ + Ca2+) ATPase was stimulated by Na+ or K+, this stimulation follows approximate saturation kinetics with an apparent Km of 18.8 mM Na+ or K+.

3. 3. Arrhenius plots of microsomal (Mg2+ + Ca2+) ATPase were curvilinear, but two intersecting lines with a break at 20°C could be fitted. The calculated energies of activation from these lines were very similar in immature and adult preparations. The synaptic membrane preparation (adult) also gave a curvilinear plot; but two intersecting lines with a break at 25°C could be fitted to the data. These lines had slopes of 21 and 28 Kcal mole−1 above and below the break, respectively. The immature preparation when made using EDTA gave a Arrhenius plot of very similar form to the adult preparation. Without EDTA however the Arrhenius plot was complex with a plateau at 25–32°C. Pretreatment with EDTA activated the synaptic membrane (Mg2+ + Ca2+) ATPase from both immature and adult brain.

Author Keywords: Brain; ATPase; temperature; development; synaptic membranes  相似文献   


10.
The effect of ( -)glutamate on extracellular K+ activity of the isolated retina of the cyprinid fish, roach, was investigated using double-barrelled K+-sensitive micro-electrodes. Application of μM-mM glutamate to the retina as a “puff” from an atomizer induced a transient rise in extracellular K+ activity, which was maximal 50–100 μm below the photoreceptor surface. The effect was concentration-dependent, but not related to the state of light adaptation of the retina. In the presence of dinitrophenol or ouabain, the glutamate-induced increase in extracellular K+ activity was maintained.

The following conclusions are made. (1) The most likely cellular origin(s) of the glutamate-induced rise in extracellular K+ activity are the photoreceptors and/or the Muller (glial) cells. (2) The mechanism responsible for returning the extracellular K+ activity to normal depends strongly on metabolic, Na+, K+ pump activity. (3) The effect parallels the action of endogenous glutamate, and may be important for modulation of neurotransmission in the intact retina.  相似文献   


11.
Steady-state current-voltage relationships (SSCVRs) of the plasma membrane of human T-lymphocytes were studied at the physiological temperature of 37°C by using the whole-cell patch-clamp technique. SSCVRs displayed a characteristic N-like shape with a negative resistance region (NRR) in a voltage range of −45 to −35 mV. The majority of cells assayed revealed SSCVR patterns crossing the V-axis at three points (in mV): V1 = −55 to −45, V2 = −40 to −35, V3 = −30 to −10. SSCVRs of T-cells activated by phytohaemagglutinin (48–96 h) also displayed NRR, but crossed the V-axis at one point only (V1 = −55 to −60 mV). It implies the possibility of two stable levels of membrane potential (V1 and V3) for the resting T-cells, but only one (V1) for activated T-cells. These data thus account for the triggering property of T-cell membrane potential previously reported. The NRR can be explained on the basis of the Hodgkin-Huxley type n4j model of K+ channel kinetics. According to the model the possibility for a membrane to have on or two stable levels of membrane potential depends on the ratio of selective K+ conductance to non-selective leaky conductance (Gk/Gleak). The steady-state level of K+ conductance in resting T-lymphocytes proved to be sensitive to Ca2+. Buffering Ca2+ ions from either external or internal solution resulted in an appreciable increase in K+ conductance. The possibility for membrane potential have two stable levels of membrane potential in connection with the Ca2+ dependence of K+ conductance was supposed to be important for Ca2+-signalling during T-cell activation.  相似文献   

12.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

13.
The role of prostaglandins (PGs) in the pressor response to norepinephrine (NE) was examined in one-kidney, one clip rabbits with renal artery stenosis for 3-day's duration (3-day clipped rabbits) and in sham operated rabbits with one-kidney without renal artery stenosis. An exaggerated pressor response to NE, 800 ng/kg/min, was observed in the 3-day clipped rabbits, and it was abolished by angiotensin II antagonist, [Sar1, Ile8] angiotensin II (AIIA). Treatment with indomethacin, 10 mg/kg, induced hyperresponsiveness to NE in the sham operated rabbits and also produced a further increase in the response in the 3-day clipped rabbits: the enhanced responses with similar levels were not attenuated by AIIA in both groups. A subdepressor dose of PGE2, 800 ng/kg/min, abolished the hyperresponsiveness in the 3-day clipped rabbits, while subdepressor or depressor dose of PGI2, 10 or 20 ng/kg/min did not, but the concurrent infusion of AIIA with PGI2 attenuated it. These results indicate that PGs, in particular PGE2 might be involved in the enhanced pressor response to NE in the 3-day clipped rabbits in addition to the altered renin-angiotensin system.  相似文献   

14.
1. Under the appropriate conditions intact yeast and mammalian mitochondria exhibit a heretofore unobserved sensitivity to the polyene antibiotic, filipin. The activity of the “filipin complex” (Filipins I, II, III and IV) is shown to be primarily due to the component designated Filipin II.

2. Yeast mitochondria treated with filipin complex, or purified Filipin II, exhibit “uncoupled” succinate oxidation and inhibited -ketoglutarate oxidation. Maximum filipin effect is observed at a concentration of 4 mM Filipin II. Rat-liver mitochondria are more sensitive to filipin than yeast mitochondria, and respiratory inhibition is observed regardless of substrate.

3. In liver mitochondria filipin-inhibited respiration is not relieved by Mg2+, K+, Ca2+ or 2,4-dinitrophenol, but is reversed by cytochrome c.

4. It is proposed that filipin treatment leads to altered membrane permeability and that respiratory inhibition is due to a loss of endogenous respiratory cofactors or an inactivation of primary dehydrogenases. The filipin-uncoupled yeast respiration may likewise be attributed to an altered phosphate permeability of the yeast mitochondrial membranes.  相似文献   


15.
This study investigated whether adenosine mediates the decrease in plasma renin activity (PRA) during acute hypoxia. Eight chronically tracheotomized, conscious beagle dogs were kept under standardized environmental conditions and received a low-sodium diet (0.5 mmol.kg body wt(-1).day(-1)). During the experiments, the dogs were breathing spontaneously via a ventilator circuit: first hour, normoxia (21% inspiratory concentration of O(2)); second and third hours, hypoxia (10% inspiratory concentration of O(2)). Each of the eight dogs was studied twice in randomized order in control and theophylline experiments. In theophylline experiments, theophylline, an A(1)-receptor antagonist, was infused intravenously during hypoxia (loading dose: 3 mg/kg within 30 min, maintenance: 0.5 mg. kg(-1). h(-1)). In theophylline experiments, PRA (5.9 +/- 0.8 ng ANG I. ml(-1). h(-1)) and ANG II plasma concentration (15.9 +/- 2.3 pg/ml) did not decrease during hypoxia, whereas plasma aldosterone concentration decreased from 277 +/- 63 to 132 +/- 23 pg/ml (P < 0.05). In control experiments, PRA decreased from 6.8 +/- 0.8 during normoxia to 3.0 +/- 0.5 ng ANG I. ml(-1). h(-1) during hypoxia, ANG II decreased from 13.3 +/- 1.9 to 7.3 +/- 1.9 pg/ml, and plasma aldosterone concentration decreased from 316 +/- 50 to 70 +/- 13 pg/ml (P < 0.05). Thus infusion of the adenosine receptor antagonist theophylline inhibited the suppression of the renin-angiotensin system during acute hypoxia. The decrease in aldosterone occurred independently and is apparently directly related to hypoxia. In conclusion, it is likely that adenosine mediates the decrease in PRA during acute hypoxia in conscious dogs.  相似文献   

16.
Changes in plasmalemma K+Mg2+-ATPase dephosphorylating activity and H+ transport were examined in freezing-tolerant and non-tolerant genotypes of the perennial grass species Festuca pratensis Huds. Enzyme activity and ΔμH+ were measured in plasmalemma fractions isolated from basal nodes and roots. Three types of experiments were undertaken: (i) a field experiment, utilizing the seasonal growth and cessation cycle of a perennial plant; (ii) a cold acclimation experiment in hydroponics; and (iii) an instant freezing test. A specific fluctuation in K+Mg2+-ATPase activity was found throughout the seasonal growth of the plants (i). The K+Mg2+-ATPase activity peaks for both the basal node and the root plasmalemma were determined early in the spring before the renewal of growth. The lowest activity values in roots occurred at the time approaching flowering, and in basal nodes at the transition into the growth cessation. The K+Mg2+-ATPase activity was approximately 50% lower in the basal node plasmalemma of freezing-tolerant plants than of non-tolerant ones, when assessed at the optimal growth stage in hydroponics. In hydroponics (ii) and in the freezing test (iii), temperature stress was followed by a more pronounced change in the level of K+Mg2+-ATPase activity than in that of H+ transport, and this change was more clearly differentiated in the basal node plasmalemma of contrasting genotypes than in the roots. Stress response was manifested differently in freezing-tolerant and non-tolerant plants at cold acclimation (4–2 °C) and at freezing (−8 °C) temperatures. Proton transport regulation via coupled changes in the hydrolysed ATP/transported proton ratio, as an attribute of freezing-tolerant plants, is discussed.  相似文献   

17.
In six hypothyroid patients (2 male, 4 females, ages 22 through 59 years), plasma renin activity (PRA) and aldosterone (Aldo) were measured when the patients were euthyroid on levothyroxine therapy and one month after the therapy was stopped. Colonic mucosal potential differences were measured during the hypothyroid and euthyroid stages, and catecholamine sensitivity was determined by the blood pressure response to infused norepinephrine. Significant differences were observed in the PRA and aldosterone concentrations which were 4.1 +/- 2.5 ng/ml/h and 9.4 +/- 5.9 ng/dl, respectively in the hypothyroid stage and 6.9 +/- 2.3 ng/ml/h and 15.2 +/- 7.3 ng/dl, respectively when the patients were made euthyroid. The colonic mucosal potential differences (which reflect increased endogenous mineralocorticoid activity), became more electronegative after correction of hypothyroidism (-16.8 +/- 7.5 mV vs -32 +/- 18.2 mV; P less than 0.04) concentrations. Statistically significant decreases in norepinephrine pressor effects were observed in hypothyroid patients when compared to the euthyroid state (7.4 +/- 2.3 vs 10.9 +/- 1.9 micrograms/ng/min; P less than 0.01). It is concluded that patients with hypothyroidism have a hormonal pattern reminiscent of "low renin hypertension", and exhibit decreased sensitivity to catecholamines. Such changes are corrected when the patients become euthyroid on levothyroxine therapy.  相似文献   

18.
Adrenomedullin (ADM) is a hypotensive peptide, highly expressed in the mammalian adrenal medulla, which belongs to a peptide superfamily including calcitonin gene-related peptide (CGRP) and amylin. Quantitative autoradiography demonstrated the presence of abundant [125I]ADM binding sites in both zona glomerulosa (ZG) and adrenal medulla. ADM binding was selectively displaced by ADM(22–52), a putative ADM-receptor antagonist, and CGRP(8–37), a ligand that preferentially antagonizes the CGRP1-receptor subtype. ADM concentration-dependently inhibited K+-induced aldosterone secretion of dispersed rat ZG cells, without affecting basal hormone production. Both ADM(22–52) and CGRP(8–37) reversed the ADM effect in a concentration-dependent manner. ADM counteracted the aldosterone secretagogue action of the voltage-gated Ca2+-channel activator BAYK-8644, and blocked K+- and BAYK-8644-evoked rise in the intracellular Ca2+ concentration of dispersed ZG cells. ADM concentration-dependently raised basal catecholamine (epinephrine and norepinephrine) release by rat adrenomedullary fragments, and again the response was blocked by both ADM(22–52) and CGRP(8–37). ADM increased cyclic-AMP release by adrenal-medulla fragments, but not capsule-ZG preparations, and the catecholamine response to ADM was abolished by the PKA inhibitor H-89. Collectively, the present findings allow us to draw the following conclusions: (1) ADM modulates rat adrenal secretion, acting through ADM(22–52)-sensitive CGRP1 receptors, which are coupled with different signaling mechanisms in the cortex and medulla; (2) ADM selectively inhibits agonist-stimulated aldosterone secretion, through a mechanism probably involving the blockade of the Ca2+ channel-mediated Ca2+ influx; (3) ADM raises catecholamine secretion, through the activation of the adenylate cyclase/PKA signaling pathway.  相似文献   

19.
Aldosterone responsiveness to angiotensin II (A II) was evaluated in 65 diabetic patients with and without various diabetic complications versus 38 age-matched non-diabetic subjects. Plasma aldosterone (PA), together with plasma renin activity (PRA), was low and responded poorly to furosemide (80 mg, orally) plus upright posture (4 hours) stimulation in diabetic patients. When the PA response to stimulation relative to PRA response was estimated from the ratio of PA increase to PRA increase after stimulation (delta PA/delta PRA), the 38 non-diabetic subjects had ratios more than 3.0. Of the 65 diabetic patients, 48 had normal delta PA/delta PRA ratios (more than 3.0) and 17 had low delta PA/delta PRA ratios (less than 2.9). Graded A II infusions (1, 2, and 4 ng/kg/min each for 30 min) were performed under a low sodium intake (sodium, 120 mEq/day) in 25 of the 65 diabetic patients, whose delta PA/delta PRA ratios were normal in 15 and low in 10, and in 16 non-diabetic subjects. The PA responses to the graded A II infusions in the normal delta PA/delta PRA diabetic patients were similar to those in the non-diabetic subjects. However, the PA responses to the graded A II infusions in the low delta PA/delta PRA diabetic patients were significantly lower. It is concluded that, although the majority of diabetic patients have normal aldosterone responsiveness to A II, some diabetic patients have blunted aldosterone responsiveness to A II probably attributable to the abnormality of the adrenal cortex in addition to the impaired renin secretion.  相似文献   

20.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号