首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In excised pith parenchyma from Nicotiana tabacum L. cv. Wisconsin Havana 38, auxin (naphthalene-1-acetic acid) together with cytokinin (6-benzylaminopurine) induced a greater than 40-fold increase in a p34cdc2-like protein, recoverable in the p13suc1-binding fraction, that had high H1 histone kinase activity, but enzyme induced without cytokinin was inactive. In suspension-cultured N. plumbaginifolia Viv., cytokinin (kinetin) was stringently required only in late G2 phase of the cell division cycle (cdc) and cells lacking kinetin arrested in G2 phase with inactive p34cdc2-like H1 histone kinase. Control of the Cdc2 kinase by inhibitory tyrosine phosphorylation was indicated by high phosphotyrosine in the inactive enzyme of arrested pith and suspension cells. Yeast cdc25 phosphatase, which is specific for removal of phosphate from tyrosine at the active site of p34cdc2 enzyme, was expressed in bacteria and caused extensive in-vitro activation of p13suc1-purified enzyme from pith and suspension cells cultured without cytokinin. Cytokinin stimulated the removal of phosphate, activation of the enzyme and rapid synchronous entry into mitosis. Therefore, plants can control cell division by tyrosine phosphorylation of Cdc2 but differ from somatic animal cells in coupling this mitotic control to hormonal signals.Abbreviations BAP 6-benzylaminopurine - BrdUrd 5-bromo-2-deoxyuridine - cdc cell division cycle - Cdc25 cdc phospho-protein phosphatase - CKI cyclin dependent kinase inhibitor - 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 4,6 diamidino-2-phenylindole - GST-cdc25 glutathione sulfur transferase-truncated cdc25 fusion - MS Murashige and Skoog (1962) - NAA naphthalene-1-acetic acid - p34cdc2 34-kDa product of the cdc2 gene  相似文献   

2.
The activity of the dual specificity phosphatase cdc25C is required for mitotic progression though the mechanisms by which cdc25C is activated prior to mitosis in human cells remain unclear. The data presented herein show that the actin binding protein Filamin A forms a complex with cdc25C in vivo and binds preferentially to the mitotic form of cdc25C. Co-expression of Filamin A with cdc25C results in an increase in PCC induced by cdc25C, while knocking down Filamin A expression reduces the levels of PCC induced by cdc25C overexpression. Further, only a Filamin A fragment that forms a complex with both cdc25C and cyclin B1 and retains the dimerization domain can stimulate the ability of cdc25C to induce PCC. These results suggest that Filamin A provides a platform for the assembly of the cyclin B1-cdk1- cdc25C complex resulting in cdk1 activation and mitotic progression.  相似文献   

3.
W G Dunphy  J W Newport 《Cell》1989,58(1):181-191
It has been demonstrated that the Xenopus homolog of the fission yeast cdc2 protein is a component of M phase promoting factor (MPF). We show that the Xenopus cdc2 protein is phosphorylated on tyrosine in vivo, and that this tyrosine phosphorylation varies markedly with the stage of the cell cycle. Tyrosine phosphorylation is high during interphase (in Xenopus oocytes and activated eggs) but absent during M phase (in unfertilized eggs). In vitro activation of pre-MPF from Xenopus oocytes results in tyrosine dephosphorylation of the cdc2 protein and switching-on of its kinase activity. The product of the fission yeast suc1 gene (p13), which inhibits the entry into mitosis in Xenopus extracts, completely blocks tyrosine dephosphorylation and kinase activation. However, p13 has no effect on the activated form of the cdc2 kinase. These findings suggest that p13 controls the activation of the cdc2 kinase, and that tyrosine dephosphorylation is an important step in this process.  相似文献   

4.
Y H Chou  J R Bischoff  D Beach  R D Goldman 《Cell》1990,62(6):1063-1071
As cells enter mitosis, the intermediate filament (IF) networks of interphase BHK-21 cells are depolymerized to form cytoplasmic aggregates of disassembled IFs, and the constituent IF proteins, vimentin and desmin are hyperphosphorylated at several specific sites. We have characterized one of two endogenous vimentin kinases from a particulate fraction of mitotic cell lysates. Through several purification steps, vimentin kinase activity copurifies with histone H1 kinase and both activities bind to p13suc1-Sepharose. The final enriched kinase preparation consists primarily of p34cdc2 and polypeptides of 65 and 110 kd. The purified kinase complex phosphorylates vimentin in vitro at a subset of sites phosphorylated in vivo during mitosis. Furthermore, phosphorylation of in vitro polymerized vimentin IFs by the purified kinase causes their disassembly. Therefore, vimentin is a substrate of p34cdc2 and phosphorylation of vimentin contributes to M phase reorganization of the IF network.  相似文献   

5.
J Hayles  P Nurse 《The EMBO journal》1995,14(12):2760-2771
We have monitored the tyrosine (Y15) phosphorylated and dephosphorylated forms of p34cdc2 from Schizosaccharomyces pombe as cells proceed through the cell cycle. Y15 is dephosphorylated in G1 before start and becomes phosphorylated only after cells pass start and enter late G1. This transition is associated with a switch from one checkpoint which restrains mitosis in pre-start G1, by a mechanism independent from Y15 phosphorylation, to a second checkpoint acting post-start during late G1 and S phase operating through Y15 phosphorylation. The pre-start checkpoint may act by preventing formation of the p34cdc2/p56cdc13 complex. The complex between Y15-phosphorylated p34cdc2 and p56cdc13 accumulates during S phase and G2, but the level generated is not solely dependent on the amount of p34cdc2 and p56cdc13 present in the cell. The extent of p56cdc13 breakdown at the end of mitosis may be determined by the amount complexed with p34cdc2. We have also shown that an insoluble form of p34cdc2 is associated with the progression of the cell through late G1 into S phase.  相似文献   

6.
G Draetta  D Beach 《Cell》1988,54(1):17-26
HeLa cell p34, homolog of the yeast cdc2+/CDC28 protein kinase, has been investigated. p34 was phosphorylated at two or more sites and existed in a complex with p13, the previously identified homolog of the suc1+ gene product of S. pombe. A fraction of the most highly phosphorylated form of p34 was also associated with p62, a newly identified protein that became phosphorylated in vitro. The phosphorylation state of p34, its association with p62, and the protein kinase activity of the complex were each subject to cell cycle regulation. In newly born cells early in G1, p34 was unphosphorylated, not associated with p62, and inactive as a protein kinase. Each of these conditions was reversed in G2 and the p34/p62 complex was maximally active as a protein kinase, with respect to both endogenous and exogenous substrates, during mitotic metaphase. p34 may act to regulate the G2/M transition in HeLa cells.  相似文献   

7.
Regulation of p34cdc2 protein kinase during mitosis   总被引:91,自引:0,他引:91  
S Moreno  J Hayles  P Nurse 《Cell》1989,58(2):361-372
The cell-cycle timing of mitosis in fission yeast is determined by the cdc25+ gene product activating the p34cdc2 protein kinase leading to mitotic initiation. Protein kinase activity remains high in metaphase and then declines during anaphase. Activation of the protein kinase also requires the cyclin homolog p56cdc13, which also functions post activation at a later stage of mitosis. The continuing function of p56cdc13 during mitosis is consistent with its high level until the metaphase/anaphase transition. At anaphase the p56cdc13 level falls dramatically just before the decline in p34cdc2 protein kinase activity. The behavior of p56cdc13 is similar to that observed for cyclins in oocytes. p13suc1 interacts closely with p34cdc2; it is required during the process of mitosis and may play a role in the inactivation of the p34cdc2 protein kinase. Therefore, the cdc25+, cdc13+, and suc1+ gene products are important for regulating p34cdc2 protein kinase activity during entry into, progress through, and exit from mitosis.  相似文献   

8.
Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.  相似文献   

9.
Cyclin B targets p34cdc2 for tyrosine phosphorylation.   总被引:21,自引:7,他引:21       下载免费PDF全文
L Meijer  L Azzi    J Y Wang 《The EMBO journal》1991,10(6):1545-1554
A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.  相似文献   

10.
Altered phosphorylation and activation of pp60c-src during fibroblast mitosis   总被引:39,自引:0,他引:39  
At least half the pp60c-src in NIH 3T3-derived c-src overexpresser cells in modified by novel threonine and, possibly, serine phosphorylation within its amino 16 kd region during mitosis. At the same time, the tryptic phosphopeptide containing Ser 17, the site of cyclic AMP-dependent phosphorylation, is either modified or dephosphorylated. While the amount of pp60c-src is not significantly altered, the in vitro-specific kinase activity of modified pp60c-src is enhanced 4- to 7-fold. Modified pp60c-src has the same tyrosine-containing tryptic phosphopeptides as pp60c-src from unsynchronized cells, indicating that activation is independent of Tyr 416/Tyr 527 phosphorylation. Electrophoretic mobility retardations indicated that endogenous pp60c-src and pp60v-src are similarly modified during mitosis. The modifications and enhanced activity disappear near the time of cell division. These results suggest that pp60c-src is regulated by and, in turn, may regulate mitosis-specific events in fibroblasts.  相似文献   

11.
Caldesmon is phosphorylated by cdc2 kinase during mitosis, resulting in the dissociation of caldesmon from microfilaments. To understand the physiological significance of phosphorylation, we generated a caldesmon mutant replacing all seven cdc2 phosphorylation sites with Ala, and examined effects of expression of the caldesmon mutant on M-phase progression. We found that microinjection of mutant caldesmon effectively blocked early cell division of Xenopus embryos. Similar, though less effective, inhibition of cytokinesis was observed with Chinese hamster ovary (CHO) cells microinjected with 7th mutant. When mutant caldesmon was introduced into CHO cells either by protein microinjection or by inducible expression, delay of M-phase entry was observed. Finally, we found that 7th mutant inhibited the disassembly of microfilaments during mitosis. Wild-type caldesmon, on the other hand, was much less potent in producing these three effects. Because mutant caldesmon did not inhibit cyclin B/cdc2 kinase activity, our results suggest that alterations in microfilament assembly caused by caldesmon phosphorylation are important for M-phase progression.  相似文献   

12.
BACKGROUND: In fission yeast, the Wee1 kinase delays entry into mitosis until a critical cell size has been reached; however, a similar role for Wee1-related kinases has not been reported in other organisms. SWE1, the budding yeast homolog of wee1, is thought to function in a morphogenesis checkpoint that delays entry into mitosis in response to defects in bud morphogenesis. RESULTS: In contrast to previous studies, we found that budding yeast swe1 Delta cells undergo premature entry into mitosis, leading to birth of abnormally small cells. Additional experiments suggest that conditions that activate the morphogenesis checkpoint may actually be activating a G2/M cell size checkpoint. For example, actin depolymerization is thought to activate the morphogenesis checkpoint by inhibiting bud morphogenesis. However, actin depolymerization also inhibits bud growth, suggesting that it could activate a cell size checkpoint. Consistent with this possibility, we found that actin depolymerization fails to induce a G2/M delay once daughter buds pass a critical size. Other conditions that activate the morphogenesis checkpoint block bud formation, which could also activate a size checkpoint if cell size at G2/M is monitored in the daughter bud. Previous work reported that Swe1 is degraded during G2, which was proposed to account for failure of large-budded cells to arrest in response to actin depolymerization. However, we found that Swe1 is present throughout G2 and undergoes hyperphosphorylation as cells enter mitosis, as found in other organisms. CONCLUSIONS: Our results suggest that the mechanisms known to coordinate entry into mitosis in other organisms have been conserved in budding yeast.  相似文献   

13.
14.
mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2.   总被引:121,自引:0,他引:121  
wee1 acts antagonistically to cdc25 in the tyrosine dephosphorylation and activation of cdc2, yet biochemical evidence suggests that wee1 is not required for tyrosine phosphorylation and its role is obscure. We show here that a related 66 kd kinase, called mik1, acts redundantly with wee1 in the negative regulation of cdc2 in S. pombe. A null allele of mik1 has no discernible phenotype, but a mik1 wee1 double mutant is hypermitotically lethal: all normal M phase checkpoints are bypassed, including the requirement for initiation of cell cycle "start," completion of S phase, and function of the cdc25+ mitotic activator. In the absence of mik1 and wee1 activity, cdc2 rapidly loses phosphate on tyrosine, both in strains undergoing mitotic lethality and in those that are viable owing to a compensating mutation within cdc2. The data suggest that mik1 and wee1 act cooperatively on cdc2, either directly as the inhibitory tyrosine kinase or as essential activators of that kinase.  相似文献   

15.
Coordinated actin remodeling is crucial for cell entry into mitosis. The WAVE regulatory complex is a key regulator of actin assembly, yet how the WAVE signaling is regulated to coordinate actin assembly with mitotic entry is not clear. Here, we have uncovered a novel mechanism that regulates the WAVE complex at the onset of mitosis. We found that the Bcr-Abl-stimulated F-actin assembly is abrogated during mitosis. This mitotic inhibition of F-actin assembly is accompanied by an attenuation of Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex. We identified serine 216 of Abi1 as a target of CDK1/cyclin B kinase that is phosphorylated in cells at the onset of mitosis. The Abi1 phosphorylated on serine 216 displayed greatly reduced tyrosine phosphorylation in the hematopoietic cells transformed by Bcr-Abl. Moreover, a phosphomimetic mutation of serine 216 to aspartic acid in Abi1 was sufficient to attenuate Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex and F-actin assembly. Ectopic expression of Abi1 with serine 216 mutations interfered with cell cycle progression. Together, these data show that CDK1-mediated phosphorylation of serine 216 in Abi1 serves as a regulatory mechanism that may contribute to coordinated actin cytoskeleton remodeling during mitosis.  相似文献   

16.
M-Phase specific protein kinase or cdc2 protein kinase is a component of MPF (M-Phase promoting factor). During meiotic maturation of Xenopus oocytes, cdc2 protein kinase is activated in correlation with MPF activity. A protein phosphorylation cascade takes place involving several protein kinases, among which casein kinase II, and different changes associated with meiosis occur such as germinal vesicle breakdown, chromosome condensation, cytoskeletal reorganization and increase in protein synthesis. Our results provide a biochemical link between cdc2 protein kinase and protein synthesis since they show that the kinase phosphorylates in vitro a p47 protein identified as elongation factor EF1 (gamma subunit) and that the in vitro site of p47 corresponds to the site phosphorylated in vivo. Immunofluorescence showed that the elongation factor (EF1-beta gamma) is localized in the oocyte cortex. Furthermore, they show that cdc2 kinase phosphorylates and activates casein kinase II in vitro, strongly supporting the view that casein kinase II is involved in the phosphorylation cascade originated by cdc2 kinase.  相似文献   

17.
Phosphorylation of p34cdc2 can both positively and negatively regulate its kinase activity. We have mapped two phosphorylation sites in Xenopus p34cdc2 to Thr-14 and Tyr-15 within the putative ATP-binding region of p34cdc2. Mutation of these sites to Ala-14 and Phe-15 has no effect on the final histone H1 kinase activity of the cyclin/p34cdc2 complex. Phosphopeptide analysis shows that there is at least one more site of phosphorylation on p34cdc2. When Thr-161 is changed to Ala, two phosphopeptide spots disappear and it is no longer possible to activate the H1 kinase activity of p34cdc2. We suggest that Thr-161 is a third site of phosphorylation, which is required for kinase activity. All three phosphorylations are induced by cyclin. None of the phosphorylations appears to be required for binding to cyclin, as indicated by the ability of the triple mutant, Ala-14, Phe-15, Ala-161, to bind cyclin. The activating phosphorylation that requires Thr- or Ser-161 occurs even in a catalytically inactive K33R mutant of p34cdc2 and hence does not appear to be the result of intramolecular autophosphorylation. We have detected an activity in Xenopus extracts required for activation of p34cdc2 and present evidence that this is a p34cdc2 activating kinase which, in a cyclin-dependent manner, probably directly phosphorylates Thr-161.  相似文献   

18.
The formation of stable cell-cell adhesions by type I cadherins depends on the association of their cytoplasmic domain with beta-catenin, and of beta-catenin with alpha-catenin. The binding of beta-catenin to these partners is regulated by phosphorylation of at least three critical tyrosine residues. Each of these residues is targeted by one or more specific kinases: Y142 by Fyn, Fer and cMet; Y489 by Abl; and Y654 by Src and the epidermal growth factor receptor. Developmental and physiological signals have been identified that initiate the specific phosphorylation and dephosphorylation of these residues, regulating cadherin function during neurite outgrowth, permeability of airway epithelium and synapse remodeling, and possibly initiating epithelial cell migration during development and metastasis.  相似文献   

19.
The release of neurotransmitter glutamate from isolated nerve terminals (synaptosomes) was found to be tightly coupled to the entry of Ca2+ through voltage-dependent Ca2+ channels, but is relatively unresponsive to "bulk" increases in cytosolic Ca2+ concentrations ([Ca2+]c) effected by Ca2+ ionophore. Under the same conditions, this dependence on Ca2+ influx, specifically through Ca2+ channels, was also seen for the dephosphorylation of a 96-kDa protein, (P96), present in the nerve terminals, as well as the phosphorylation of proteins migrating at 75 kDa (P75), corresponding to the synapsins, a group of well characterized synaptic vesicle-associated proteins. P96 dephosphorylation, following Ca2+ influx, was persistent and insensitive to the phosphatase inhibitor okadaic acid, suggesting a phosphatase other than protein phosphatase 1 and 2A as being responsible. Perhaps through the same phosphatase activity the increase in P75 phosphorylation was rapidly reversed with a time course similar to P96 dephosphorylation. When release, P96 dephosphorylation, and P75 phosphorylation were considered as functions of the [Ca2+]c increases achieved by depolarization and Ca2+ ionophore, there was no correlation of any of these with the overall concentration of Ca2+ in the cytosol. Since the fura-2 method used to measure [Ca2+] gives an averaged [Ca2+]c, these results imply that the release and protein dephosphorylation events are functionally coupled to local [Ca2+]c, in the immediate vicinity of Ca2+ channels. The reported clustering of the latter at the active zone area of the synapse and the parallelism between synaptic vesicle exocytosis and the phosphorylation of synaptic vesicle-associated proteins (p75:synapsins Ia/Ib), suggests that P96 may be similarly localized at the active zone area and, therefore, may be of significance in a modulatory role in glutamate release.  相似文献   

20.
Mechanism of tyrosine hydroxylase activation by phosphorylation   总被引:2,自引:0,他引:2  
It was found that the fluorescence of 1,N6-ethenoadenosine triphosphate (ε-ATP) bound to myosin subfragment-1 (S-1) is resistant to quenching by acrylamide, while free ε-ATP is effectively quenched. Thus in the presence of acrylamide the bound ε-ATP is still highly fluorescent, while free ε-ATP is much less fluorescent. The Stern-Volmer constants of bound and free ε-ATP are 6.83 and 57.86 M?1, respectively. Therefore it is easy to distinguish spectro-scopically the nucleotide-ligated S-1 from nucleotide-free S-1. Moreover acrylamide does not alter the S-1-Mg2+-ε-ATPase behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号