首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red tail of the absorption spectrum of the D1-D2-cytb559 complex, defined as the absorption signal not described by the two Gaussian sub-bands associated with the intense electronic transitions at 680 and 683 nm, exhibits anomalous temperature behavior. This tail was analyzed in the temperature interval between 80 and 300 K in terms of the mean square deviation (sigma2) of the total Qy absorption band and by Gaussian sub-band decomposition. The value of the average optical reorganization energy (Snum) obtained from the temperature dependence of sigma2 for the whole absorption band was 32 cm(-1), and changed to 16-20 cm(-1) after subtraction of the sub-bands describing the red tail. This latter value is in agreement with the hole burning literature data for chlorophyll bound to proteins, and indicates that the rather high value for the apparent optical reorganization energy obtained by analysis of the total Qy band of the D1-D2-cytb559 complex is determined by the temperature sensitivity of the red tail. This suggests that the long wavelength absorption tail might be due to vibrational transitions associated with vibrational modes in the range of 80-150 cm(-1) which are thermally accessible and give rise to an absorption signal on the low-energy side of the (0,0) transition. On the basis of this assumption, the electron-phonon coupling strength (S) for these modes is estimated to be in the range 0.028-0.18. This interpretation furthermore supports the idea that the electronic transition near 683 nm is that of a monomer chlorophyll.  相似文献   

2.
Selective excitation, at room temperature, in the long wavelength absorption tail of the photosystem I antenna complexes, known as light harvesting complex I, induces pronounced pre-equilibration fluorescence from the directly excited pigment state. This has allowed determination of the fluorescence band shape of this low energy photosystem I chlorophyll antenna state, at room temperature, for the first time. The emission maximum is near 735 nm. The remarkable band width (55 nm) and asymmetry have never been previously reported for chlorophyll a states.  相似文献   

3.
The effect of temperature on the aggregation of 3lR-8,12-diethyl farnesyl bacteriochlorophyll c in a mixture of n-pentane and methylcyclohexane (1/1, v/v) was studied by means of absorption, circular dichroism and fluorescence spectroscopy. At room temperature essentially only two aggregate species, absorbing at 702 nm (A-702) and 719 nm (A-719), were present. Upon cooling to 219 K, A-702 was quantitatively converted to A-719. Further lowering of the temperature led to the stepwise formation of larger aggregates by the conversion of A-719 to aggregate species absorbing at 743 nm (A-743) and 755 nm (A-755). All absorption changes were reversible. A-719 was highly fluorescent (maximum at 192 K: 744 nm), while A-743 and especially A-755 were weakly fluorescent. Below 130 K the mixture solidified, and no major changes in the absorption spectrum were observed upon further cooling. At 45 K, however, a relatively strong emission at 775 nm was observed. Below 200 K, the absorption, fluorescence and circular dichroism spectra resembled that of the chlorosome. These results open up the possibility to study higher aggregates of BChl c as models for the chlorosome by various methods at low temperature, thus avoiding interference by thermal processes.Abbreviations A-680, A-702, A-719, A-743 and A-755- BChl c aggregates absorbing at the wavelengths indicated - BChl- bacteriochlorophyll - R[E,E] BChl c F- the 31 R isomer of 8,12-diethyl BChl c esterified with farnesol (F), analogously - M- methyl - Pr- propyl - S- stearol (see Smith 1994) - CD- circular dichroism  相似文献   

4.
A study of the absorption and fluorescence characteristics of the D1/D2/cytb-559 reaction centre complex of Photosystem II has been carried out by gaussian decomposition of absorption spectra both at room temperature and 72 K and of the room temperature fluorescence spectrum. A five component fit was found in which the absorption and fluorescence sub-bands could be connected by the Stepanov relation. The photobleaching and light-activated degradation in the dark of long wavelength pigments permitted a further characterisation of the absorption bands. The absorption (fluorescence) maxima of the five bands at room temperature are 660 nm (670 nm), 669 nm (675 nm), 675 nm (681 nm), 680 nm (683 nm), 681 nm (689 nm). A novel feature of this analysis is the presence of two approximately isoenergetic absorption bands near 680 nm at room temperature. The narrower one (FWHM=12.5 nm) is attributed to pheophytin while the broader band (FWHM=23 nm) is thought to be P680. The P680 band width is discussed in terms of homogeneous and site inhomogeous band broadening. The P680 fluorescence has a large Stokes shift (9 nm) and most fluorescence in the 690–700 nm range is associated with this chromophore.The three accessory pigment bands are broad (FWHM=17–24 nm) and the 660 nm gaussian is largely temperature insensitive thus indicating significant site inhomogeneous broadening.The very slight narrowing of the D1/D2/cytb-559 Qy absorption at crytogenic temperatures is discussed in terms of the coarse spectral inhomogeneity associated with the spectral forms and the apparently large site inhomogeneous broadening of short wavelength accessory pigments.  相似文献   

5.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

6.
The effect of anion binding to ceruloplasmin has been studied using absorption and cirbular dichroism spectral data. At anion to ceruloplasmin molar ratios approaching infinite, OCN-, N3- and SCN- bind to ceruloplasmin giving rise to similar alterations in circular dichroism and absorption spectra. The positive bands at 610 and 520 nm in circular dichroism spectra disappear, a negative one apperars at 600 nm and the peak at 450 nm is only slightly modified. There is a new negative band at 410 nm well-defined in OCN- ceruloplasmin spectra. The decrease in absorption at 610 nm is ascribed to the disruption of one type I Cu-S(cysteine) bond owing presumably to the changes induced by anions in the protein secondary structure. The new band at 410 nm is assigned to a charge transfer transition from the ligand replacing cysteine at its binding site. Both absorption and circular dichroism spectra show isobestic points indicating that anion binding to the enzyme, disruption of one of the two type I Cu-S bonds and coordination of this Cu to another protein residue take place simultaneously.  相似文献   

7.
Selective destruction of the strongly dichroic red-shifted chlorophyll form (C709 nm) in photosystem I (PSI) trimers from Spirulina, by either non-selective high intensity illumination (photobleaching) or incubation with low concentrations of Triton X-100 is accompanied by changes in the circular dichroism spectrum of the same amplitude and of opposite sign at 677 nm. The data are interpreted in terms of a dimeric chlorophyll structure with excitonic bands at these two wavelengths. Similar photobleaching experiments with PSI-200 from maize also suggest the presence of bulk antenna/red form excitonic interactions.  相似文献   

8.
The changes in optical activity that accompany and characterize the coil-helix and helix-coil transitions of agarose in aqueous solutions and gels have been investigated by combined quantitative analysis of data from vacuum ultraviolet circular dichroism (VUCD) and optical rotary dispersion (ORD). VUCD of agarose in the high-temperature coil state shows a single accessible Gaussian band centered at ~183 nm. In the helix state this band is blue-shifted by ~9 nm, and the intensity is increased by a factor of ~2.6. Spectra at intermediate temperatures can be fitted to within experimental error by linear combination of coil and helix spectra, the relative proportions required providing an index of the extent of conformational ordering. ORD spectra throughout the conformational transition have a common form and differ only in absolute magnitude. The temperature course of conformational ordering derived from ORD intensity is in close agreement with the values obtained from VUCD. In both the coil and helix states the accessible VUCD band is positive, while the overall ORD is negative, indicating strong negative CD activity at lower wavelength. The ORD contribution corresponding to the positive VUCD band was calculated by Kronig–Kramers transform, and it was subtracted from the total ORD to give the residual ORD from all other optically active transitions of the molecule. In both the coil and helix states, this residual ORD could be fitted to within experimental error by a single Gaussian CD band at ~149 nm. A negative band at this wavelength has been reported previously for agarose films, but the observed intensity, relative to that of the lower energy positive band, is substantially smaller than the fitted value under hydrated conditions. In both the coil and helix states the total optical activity of agarose, characterized by observed ORD spectra, can be matched to within experimental error by Kronig-Kramers transform of the 149-nm negative band and the smaller positive band at higher wavelength, with no necessary involvement of deeper-lying transitions. The significance of this conclusion for fundamental understanding of carbohydrate optical activity is discussed.  相似文献   

9.
Low-temperature heterogeneous absorption and circular dichroism spectra of the Rb. sphaeroides LH2 complexes are calculated within the framework of the mini-exciton theory and diagonal static random disorder for the pure electronic transitions of the monomeric Bchl molecules. The coupling of Bchl molecules with the surrounding amino acid residues has been shown to change both the exciton distribution between the pigment molecules in each of the exciton states. The value of the delocalization index depends on the excitation wavelength and varies between 2-6 Bchl molecules. The optical transitions occurring at 780-790 and 820 nm have been found to be strongly mixed so that all Bchl molecules of the LH2 complex predetermine absorption in these spectral regions. On the other hand, absorption at 800 and 850 nm is mainly determined by the cycles of 9 and 18 Bchl molecules, respectively. Thus, the light energy absorbed by the B800 molecules at 800 nm is transferred to the B850 molecules by the interlevel exciton relaxation processes due to the population of the heavily mixed 820-nm exciton levels. The width of the heterogeneous absorption band for the cyclic monomeric aggregate has been shown to decrease as compared with the monomeric absorption band by square root(Ndel) time, where Ndel is the mean number of pigments over which the exciton is delocalized within the excited absorption band.  相似文献   

10.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550-650 and 700-950nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as deltaav/deltaah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm , and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the "special pair" that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the "light-dark" difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

11.
Analysis of circular dichroism spectra made it possible to offer a method for estimation of tetracycline solutions contamination with metal ions. By its sensitivity the method is much superior to the spectrophotometric one used at present for determination of the antibiotic purity. In the latter method formation of complexes with metals is traced by batochromic displacement of the absorption spectra. The new method is rapid, relatively selective and requires comparatively small quantities of the substance for the analysis, which provides its use under both laboratory and manufacture conditions. The method is based on identification of the circular dichroism spectra of tetracycline complexes with metals in the long wavelength region. The presence of the circular dichroism concervative bands with strictly defined extremums in the spectra of tetracycline low acid solutions contaminated by multiply charged metal ions allowed vs. the circular dichroism spectra of pure tetracycline sample to conclude that the solution contained admixtures and to suggest their nature. It was shown that the charge, ion radius and tetracycline:metal relation were the factors defining the mark and location of the dichroism band extremums. At lambda(extr)-410-415 nm the tetracycline complexes with light metal ions such as Mg2+, Al3+ and Ca2+ were detected by the circular dichroism negative band in the spectra, while the complexes with heavy metal ions such as Sc3+, Sr3+, Cu3+, Cd3+, Ba2+, Y3+ and the cerium subgroup lanthanides were detected by the circular dichroism positive band. The tetracycline complexes with the lanthanides of the second half of the yttrium subgroup (Ho(3+)-Lu3+) were characterized by the presence of the circular dichroism minimum at lambda(min)-425 nm. When the tetracycline concentration was above 1.5 x 10(-3) M, multiligand complexes with circular dichroism negative extremum at lambda(min)-400 nm formed.  相似文献   

12.
Bacteriochlorophyll a-protein from Prosthecochloris aestuarii strain 2K was oriented in a pulsed electric field. The room temperature linear dichroism spectrum of the oriented protein in the Qy region of the bacteriochlorophyll a absorption exhibits a single asymmetrical peak at 813 nm with a shoulder extending to the blue. The ≈12 nm fullwidth of the linear dichroism peak is only about half that of the 300 K absorption spectrum. The linear dichroism at 813 nm was not saturated at field strengths of up to 15 kV/cm. The time dependence of the linear dichroism suggests that the orienting particles are aggregates of at least some tens of bacteriochlorophyll a-protein trimers. The linear dichroism peak coincides in wavelength with the 813-nm peak of the 300 K, 4th derivative absorption spectrum of the protein and is therefore attributed to the bacteriochlorophyll a Qy exciton transition observed in absorption at the same wavelength.  相似文献   

13.
Whole cells and isolated chlorosomes (antenna complex) of the green photosynthetic bacterium Chloroflexus aurantiacus have been studied by absorption spectroscopy (77 K and room temperature), fluorescence spectroscopy, circular dichroism, linear dichroism and electron spin resonance spectroscopy. The chlorosome absorption spectrum has maxima at 450 (contributed by carotenoids and bacteriochlorophyll (BChl) a Soret), 742 (BChl c) and 792 nm (BChl a) with intensity ratios of 20:25. The fluorescence emission spectrum has peaks at 748 and 802 nm when excitation is into either the 742 or 450 nm absorption bands, respectively. Whole cells have fluorescence peaks identical to those in chlorosomes with the addition of a major peak observed at 867 nm. The CD spectrum of isolated chlorosomes has an asymmetric-derivative-shaped CD centered at 739 nm suggestive of exciton interaction at least on the level of dimers. Linear dichroism of oriented chlorosomes shows preferential absorption at 742 nm of light polarized parallel to the long axis of the chlorosome. This implies that the transition dipoles are also oriented more or less parallel to the long axis of the chlorosome. Treatment with ferricyanide results in the appearance of a 2.3 G wide ESR spectrum at g 2.002. Whole cells grown under different light conditions exhibit different fluorescence behavior when absorption is normalized at 742 nm. Cells grown under low light conditions have higher fluorescence intensity at 748 nm and lower intensity at 802 nm than cells grown under high light conditions. These results indicate that the BChl c in chlorosomes is highly organized, and transfers energy from BChl c (742 nm) to a connector of baseplate BChl B792 (BChl a) presumably located in the chlorosome baseplate adjacent to the cytoplasmic membrane.  相似文献   

14.
X L Xie  J D Simon 《Biochemistry》1991,30(15):3682-3692
Picosecond time-resolved polarization spectroscopy is used to study relaxation dynamics in myoglobin following photoelimination of CO from carbonmonoxymyoglobin. Evolution of the transient circular dichroism signal of the N band of myoglobin (probed at 355 nm) to that characteristic of equilibrium myoglobin requires approximately 300 ps. This time scale is significantly longer than that corresponding to the photoinitiated bond cleavage. Transient linear dichroism of the Soret band and picosecond time-resolved magnetic circular dichroism measurements of the Q band demonstrate that the circular dichroism kinetics do not result from either time-dependent changes in the orientation of the transition moments of the heme ring or the doming of the heme that accompanies the out-of-plane motion of the iron. Finally, transient absorption data of the near-IR optical transition of photogenerated myoglobin suggest that the circular dichroism data are not a measure of the tilting of the proximal histidine. The circular dichroism data are discussed in terms of a relaxation in the tertiary structure of the protein following dissociation.  相似文献   

15.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550–650 and 700–950 nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as Δavah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810 nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm, and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the “special pair” that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the “light-dark” difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

16.
Induced optical activity in poly-L-lysine-methyl orange system   总被引:1,自引:0,他引:1  
M Hatano  M Yoneyama  Y Sato  Y Kawamura 《Biopolymers》1973,12(10):2423-2426
The absorption and cicular dichroism spectra of the complex of poly-L -lysine (PLL) in the random coil form with methyl orange (MO) have been measured in aqueous solution. A new absorption band is observed at the shorter wavelength compared with that of the free dye. Although MO does not show a formation of dimer or aggregation with an increase in concentration, circular dichroism bands are observed at the wavelength corresponding to the wavelength of the new absorption band. These induced circular dichroism bands may arise from the dimeric MO molecules bound to PLL in the random coil form. The main contribution to the interaction between MO molecules is shown to be the electro static interaction. The observed circular dichroism spectra and the configuration of dimeric MO molecules bound to PLL can be explained by the dipole couping mechanism.  相似文献   

17.
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.  相似文献   

18.
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.  相似文献   

19.
Hagar WG 《Plant physiology》1979,63(6):1182-1186
The light-induced transient states of chlorophyll-protein 668 (Cp668) and its photoconverted from Cp743 were investigated using flash photolysis. Short lived transient species induced by a short flash were detected in both Cp668 and Cp743. The Cp668 transient had a half decay time of 2.0 milliseconds and showed a broad absorption band at 460 nanometers. The Cp743 transient had a half decay time of only 0.6 millisecond and had a major absorption peak at 410 nanometers in addition, to a broad absorption band around 530 nanometers. Both transient signals were quenched by oxygen. Cp668 had a temperature-dependent delayed fluorescence at room temperature with a half-life of 2.0 milliseconds, the same as the life-time of the absorption transient. This suggests that the transient species observed was a triplet state of chlorophyll.  相似文献   

20.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号