首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selection on Codon Usage for Error Minimization at the Protein Level   总被引:1,自引:0,他引:1  
Given the structure of the genetic code, synonymous codons differ in their capacity to minimize the effects of errors due to mutation or mistranslation. I suggest that this may lead, in protein-coding genes, to a preference for codons that minimize the impact of errors at the protein level. I develop a theoretical measure of error minimization for each codon, based on amino acid similarity. This measure is used to calculate the degree of error minimization for 82 genes of Drosophila melanogaster and 432 rodent genes and to study its relationship with CG content, the degree of codon usage bias, and the rate of nucleotide substitution. I show that (i) Drosophila and rodent genes tend to prefer codons that minimize errors; (ii) this cannot be merely the effect of mutation bias; (iii) the degree of error minimization is correlated with the degree of codon usage bias; (iv) the amino acids that contribute more to codon usage bias are the ones for which synonymous codons differ more in the capacity to minimize errors; and (v) the degree of error minimization is correlated with the rate of nonsynonymous substitution. These results suggest that natural selection for error minimization at the protein level plays a role in the evolution of coding sequences in Drosophila and rodents.Reviewing Editor: Dr. Massimo Di Giulio  相似文献   

2.
The genetic code is not random but instead is organized in such a way that single nucleotide substitutions are more likely to result in changes between similar amino acids. This fidelity, or error minimization, has been proposed to be an adaptation within the genetic code. Many models have been proposed to measure this adaptation within the genetic code. However, we find that none of these consider codon usage differences between species. Furthermore, use of different indices of amino acid physicochemical characteristics leads to different estimations of this adaptation within the code. In this study, we try to establish a more accurate model to address this problem. In our model, a weighting scheme is established for mistranslation biases of the three different codon positions, transition/transversion biases, and codon usage. Different indices of amino acids physicochemical characteristics are also considered. In contrast to pervious work, our results show that the natural genetic code is not fully optimized for error minimization. The genetic code, therefore, is not the most optimized one for error minimization, but one that balances between flexibility and fidelity for different species.  相似文献   

3.
Since the early days of the discovery of the genetic code nonrandom patterns have been searched for in the code in the hope of providing information about its origin and early evolution. Here we present a new classification scheme of the genetic code that is based on a binary representation of the purines and pyrimidines. This scheme reveals known patterns more clearly than the common one, for instance, the classification of strong, mixed, and weak codons as well as the ordering of codon families. Furthermore, new patterns have been found that have not been described before: Nearly all quantitative amino acid properties, such as Woeses polarity and the specific volume, show a perfect correlation to Lagerkvists codon–anticodon binding strength. Our new scheme leads to new ideas about the evolution of the genetic code. It is hypothesized that it started with a binary doublet code and developed via a quaternary doublet code into the contemporary triplet code. Furthermore, arguments are presented against suggestions that a simpler code, where only the midbase was informational, was at the origin of the genetic code.  相似文献   

4.
The Standard Genetic Code is organized such that similar codons encode similar amino acids. One explanation suggested that the Standard Code is the result of natural selection to reduce the fitness ``load' that derives from the mutation and mistranslation of protein-coding genes. We review the arguments against the mutational load-minimizing hypothesis and argue that they need to be reassessed. We review recent analyses of the organization of the Standard Code and conclude that under cautious interpretation they support the mutational load-minimizing hypothesis. We then present a deterministic asexual model with which we study the mode of selection for load minimization. In this model, individual fitness is determined by a protein phenotype resulting from the translation of a mutable set of protein-coding genes. We show that an equilibrium fitness may be associated with a population with the same genetic code and that genetic codes that assign similar codons to similar amino acids have a higher fitness. We also show that the number of mutant codons in each individual at equilibrium, which determines the strength of selection for load minimization, reflects a long-term evolutionary balance between mutations in messages and selection on proteins, rather than the number of mutations that occur in a single generation, as has been assumed by previous authors. We thereby establish that selection for mutational load minimization acts at the level of an individual in a single generation. We conclude with comments on the shortcomings and advantages of load minimization over other hypotheses for the origin of the Standard Code. Received: 4 April 2001 / Accepted: 22 October 2001  相似文献   

5.
6.
Summary It is apparent in the genetic code that amino acids of similar chemical nature have similar codons. I show how through successive codon captures (multiple rounds of Osawa-Jukes type reassignments), complete codon swappings in an unfavorable genetic code are evolutionarily feasible. This mechanisms could have complemented the ambiguity reduction and the vocabulary extension processes of codon-amino acid assignments. Evolution of wobble rules is implied. Transfer RNA molecules and synthetases may still carry memories of it.  相似文献   

7.
8.
Summary Theories of the origin of the genetic code assign different weights to amino acid properties such as polarity and precursor-product relationship. Previous statistical work on the origin of the genetic code has produced controversial results. We analyze relationships between various amino acid and tRNA properties by one and the same statistical method. It is shown that polarities as well as precursor-product relationships are both likely to have been important in shaping the genetic code, together with codon swapping that left protein sequences intact.  相似文献   

9.
10.
The usage of synonymous codons and the frequencies of amino acids were investigated in the complete genome of the bacterium Thermotoga maritima using a multivariate statistical approach. The GC3 content of each gene was the most prominent source of variation of codon usage. Surprisingly the usage of UGU and UGC (synonymous triplets coding for Cys, the least frequent amino acid in this species) was detected as the second most prominent source of variation. However, this result is probably an artifact due to the very low frequency of Cys together with the nonbiased composition of this genome. The third trend was related to the preferential usage of a subset of codons among highly expressed genes, and these triplets are presumed to be translationally optimal. Concerning the amino acid usage, the hydropathy level of each protein (and therefore the frequency of charged residues) was the main trend, while the second factor was related to the frequency of usage of the smaller residues, suggesting that the cell economy strongly influences the architecture of the proteins. The third axis of the analysis discriminated the usage of Phe, Tyr, Trp (aromatic residues) plus Cys, Met, and His. These six residues have in common the property of being the preferential targets of reactive oxygen species, and therefore the anaerobic condition of T. maritima is an important factor for the amino acid frequencies. Finally, the Cys content of each protein was the fourth trend. Received: 22 June 2001 / Accepted: 1 October 2001  相似文献   

11.
Abstract The influence of local base composition on mutations in chloroplast DNA (cpDNA) is studied in detail and the resulting, empirically derived, mutation dynamics are used to analyze both base composition and codon usage bias. A 4 × 4 substitution matrix is generated for each of the 16 possible flanking base combinations (contexts) using 17,253 noncoding sites, 1309 of which are variable, from an alignment of three complete grass chloroplast genome sequences. It is shown that substitution bias at these sites is correlated with flanking base composition and that the A+T content of these flanking sites as well as the number of flanking pyrimidines on the same strand appears to have general influences on substitution properties. The context-dependent equilibrium base frequencies predicted from these matrices are then applied to two analyses. The first examines whether or not context dependency of mutations is sufficient to generate average compositional differences between noncoding cpDNA and silent sites of coding sequences. It is found that these two classes of sites exist, on average, in very different contexts and that the observed mutation dynamics are expected to generate significant differences in overall composition bias that are similar to the differences observed in cpDNA. Context dependency, however, cannot account for all of the observed differences: although silent sites in coding regions appear to be at the equilibrium predicted, noncoding cpDNA has a significantly lower A+T content than expected from its own substitution dynamics, possibly due to the influence of indels. The second study examines the codon usage of low-expression chloroplast genes. When context is accounted for, codon usage is very similar to what is predicted by the substitution dynamics of noncoding cpDNA. However, certain codon groups show significant deviation when followed by a purine in a manner suggesting some form of weak selection other than translation efficiency. Overall, the findings indicate that a full understanding of mutational dynamics is critical to understanding the role selection plays in generating composition bias and sequence structure.  相似文献   

12.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1 are A-ended or U-ended...  相似文献   

13.
During the RNA World, organisms experienced high rates of genetic errors, which implies that there was strong evolutionary pressure to reduce the errors’ phenotypical impact by suitably structuring the still-evolving genetic code. Therefore, the relative rates of the various types of genetic errors should have left characteristic imprints in the structure of the genetic code. Here, we show that, therefore, it is possible to some extent to reconstruct those error rates, as well as the nucleotide frequencies, for the time when the code was fixed. We find evidence indicating that the frequencies of G and C in the genome were not elevated. Since, for thermodynamic reasons, RNA in thermophiles tends to possess elevated G+C content, this result indicates that the fixation of the genetic code occurred in organisms which were either not thermophiles or that the code’s fixation occurred after the rise of DNA. Supplementary Materials Original data and programs are available at the author’s web site: .  相似文献   

14.
在基因组学水平上研究密码子使用偏性模式、成因并分析进化过程中的选择压力在基因组学研究中有重要意义。文章概述了目前提出的密码子使用偏性的量化方法及实现原理。目前研究发现:有些量化密码子偏性的方法受高表达基因参考数据集未完全注释的限制,不同密码子位置对变异和选择的影响不同,以及不同密码子位置处GC含量和嘌呤含量的贡献不同。由此展望密码子偏性量化方法发展方向为:需要设计不需要相关参考基因集合先验知识的密码子使用偏性量化方法;考虑不同位置处背景核苷酸组成的密码子使用偏性的量化方法;同时考虑基因表达水平的密码子使用偏性量化方法。最后,归纳了目前可用的密码子使用偏性的量化工具和数据库。  相似文献   

15.
The persistence of life requires populations to adapt at a rate commensurate with the dynamics of their environment. Successful populations that inhabit highly variable environments have evolved mechanisms to increase the likelihood of successful adaptation. We introduce a 64 × 64 matrix to quantify base-specific mutation potential, analyzing four different replicative systems, error-prone PCR, mouse antibodies, a nematode, and Drosophila. Mutational tendencies are correlated with the structural evolution of proteins. In systems under strong selective pressure, mutational biases are shown to favor the adaptive search of space, either by base mutation or by recombination. Such adaptability is discussed within the context of the genetic code at the levels of replication and codon usage.Supplementary material to this paper is available in electronic form.Reviewing Editor: Dr. Edward Trifonov  相似文献   

16.
The Genetic Code appears to be a non-random triplet code in which both the position of a nucleotide within a codon, as well as its physicochemical nature, contribute to the identity of the expressed amino acid. The non-randomness of the code is manifested in apparent patterns in the mapping from codon to amino acid; some of the patterns seem quite clear, while other more subtle patterns are less obvious or certain. Discussion in the literature has been largely qualitative in nature. In this study, we employ evolution similarity data, widely employed in the field of bioinformatics, to explore the patterns relating nucleotide features to amino acids. The results support a hierarchical order based on position and physicochemical features proposed by Jimenez-Montaño et al., [“The Hypercube Structure of the Genetic Code Explains Conservative and Non-Conservative Amino Acid Substitutions in vivo and in vitroBiosystems (1996) 39, pp. 117–125]. The method also provides a quantitative approach to testing the importance of other putative patterns.  相似文献   

17.
The canonical genetic code has been reported both to be error minimizing and to show stereochemical associations between coding triplets and binding sites. In order to test whether these two properties are unexpectedly overlapping, we generated 200,000 randomized genetic codes using each of five randomization schemes, with and without randomization of stop codons. Comparison of the code error (difference in polar requirement for single-nucleotide codon interchanges) with the coding triplet concentrations in RNA binding sites for eight amino acids shows that these properties are independent and uncorrelated. Thus, one is not the result of the other, and error minimization and triplet associations probably arose independently during the history of the genetic code. We explicitly show that prior fixation of a stereochemical core is consistent with an effective later minimization of error. [Reviewing Editor : Dr. Stephen Freeland]  相似文献   

18.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

19.
为探究滇黄精(Polygonatum kingianum)叶绿体全基因组特征和密码子使用偏性,利用第二代测序技术对滇黄精嫩叶进行测序,再经组装与注释后得到其叶绿体基因组全序列,通过MISA、EMBOSS和CodonW等软件对滇黄精叶绿体全基因组的SSR位点、系统发育及密码子偏好性进行分析。结果表明,滇黄精完整叶绿体基因组长度为155 852 bp,基因组平均GC含量为37.7%,其大、小单拷贝区(LSC)长度分别为84 633和185 25 bp,反向重复区长度为26 347 bp,注释了132个基因,包括86个蛋白编码基因、38个tRNA基因和8个核糖rRNA基因。叶绿体基因组中共有69个SSR位点,绝大多数属于单碱基重复的A/T类型。系统发育分析表明滇黄精与格脉黄精(P. tessellatum)亲缘关系近,可能与分布地域有关。密码子偏好性分析表明,滇黄精叶绿体基因组密码子使用模式受到自然选择影响大于突变因素,最终确定9个最优密码子。因此, 滇黄精叶绿体基因组遗传结构和系统发育位置及其密码子偏倚的分析,为叶绿体基因工程研究提供理论依据。  相似文献   

20.
An Evaluation of Measures of Synonymous Codon Usage Bias   总被引:14,自引:0,他引:14  
Synonymous codons are not generally used at equal frequencies, and this trend is observed for most genes and organisms. Several methods have been proposed and used to estimate the degree of the nonrandom use of the different synonymous codons. The estimates obtained by these methods, however, show different levels of both precision and dispersion when coding regions of a finite number of codons are under analysis. Here, we present a study, based on computer simulation, of how the different methods proposed to evaluate the nonrandom use of synonymous codons are affected by the length of the coding region analyzed. The results show that some of these methods are heavily influenced by the number of codons and that the comparison of codon usage bias between coding regions of different lengths shows a methodological bias under different conditions of nonrandom use of synonymous codons. The study of the dispersion of the estimates obtained by the different methods gives, on the other hand, an indication of the methods to be applied to compare values of codon usage bias among coding regions of equivalent length. Received: 10 September 1997 / Accepted: 23 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号