首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the biochemical basis of candidacidal activity by comparing the killing of Candida albicans, a serious pathogen, and Candida parapsilosis, a low-grade pathogen, by human monocytes (Mo) and monocyte-derived macrophages. Mo killed C. parapsilosis significantly better than C. albicans. The two species triggered the respiratory burst and release of myeloperoxidase (MPO) and beta-glucuronidase in Mo to an equivalent extent. In contrast to Mo, macrophages killed both species to an equivalent extent. Mo exhibited a greater candida-stimulated respiratory burst than did monocyte-derived macrophages, and the respiratory burst was required for the killing of both species. C. parapsilosis was killed much more easily than C. albicans by exposure to low concentrations of hypochlorite or monochloramine, MPO-dependent oxidants released by Mo but not macrophages, which lack MPO. With six different Candida strains there was a significant correlation between killing by Mo and susceptibility to hypochlorite (r = 0.926) or monochloramine (r = 0.981) (p less than 0.01 for each). Species differences in resistance to killing by Mo may be related to differences in sensitivity to MPO-derived oxidants, and the ability of C. albicans to resist the effects of these oxidants may be a virulence factor associated with this species.  相似文献   

2.
A water-soluble oligosaccharide, N-acetylchitohexaose (NACOS-6), was able to enhance the protective effect against Candida albicans infection in mice during the early phase of tumor-bearing. A significant decrease in the number of C. albicans cells in the kidneys of NACOS-6-treated tumor-bearing mice was observed 8 days after the fungal infection, or 15 days after the tumor transplantation. The candidacidal activity of polymorphonuclear leukocytes from NACOS-6-treated tumor-bearing mice did not differ from that of NACOS-6-untreated tumor-bearing mice. On the other hand, the candidacidal activities of both macrophages and T lymphocytes increased following administration of NACOS-6 in the early phase of tumor-bearing. The culture supernatant of T lymphocytes from NACOS-6-treated tumor-bearing mice also potentiated the candidacidal activity of casein-induced macrophages. An enhancement of natural killer cell activity of splenic lymphocytes obtained from NACOS-6-treated tumor-bearing mice was also observed.  相似文献   

3.
An acidic fraction of bakers' yeast mannan, WAM025, showed a significant protective effect against Candida albicans infection in mice, but a neutral fraction of the same bakers' yeast mannan, WNM, did not exhibit this effect. Moreover, pretreatment with WAM025 resulted in a marked reduction of proliferation of C. albicans cells in the organs of the infected mice. We investigated the stimulative effect of these mannan fractions on the function of mouse peritoneal phagocytes, and found that mice administered WAM025 showed a greater increase in the number of peritoneal exudate cells, macrophages and polymorphonuclear leucocytes (PMN), than the mice treated with WNM, especially in the proportion of PMN. Peritoneal phagocytes, PMN and macrophages obtained from WAM025-treated mice showed marked candidacidal activity. Of the phagocytes, PMN were responsible for the larger part of the candidacidal activity. The myeloperoxidase activities of PMN and macrophages in WAM025-treated PEC were greater than in untreated macrophages. The myeloperoxidase activity of WAM025-treated PMN was significantly greater than that of WAM025-treated macrophages. This activity paralleled the active oxygen-releasing activity of the phagocytes. On the other hand, the phagocytic activity of phagocytes from mice administered WNM or WAM025 for C. albicans cells was identical to that of untreated phagocytes. WAM025 seems to cause enhance elimination of the pathogen from mice, by increasing the number and candidacidal activity of phagocytic cells.  相似文献   

4.
Candida infections are common infections and fluconazole is one of the most frequently administered antifungal agents in their treatment. The resistance developed against antifungal agents has necessitated the improvement of new treatments. This study focuses on the investigation of the effect of fluconazole and cytokines such as interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF) on chemokine production and anticandidal activity of human monocytes. In the study it was observed that GM-CSF caused an increase in candidacidal activity of monocytes. Anticandidal activity of GM-CSF + IFN-gamma combination was not found to be more effective than GM-CSF or IFN-gamma alone. The presence of cytokine and fluconazole caused an increase in the levels of CCL3 and CCL4 chemokines. Accordingly, it was considered that chemokines could contribute to the efficacy of fluconazole in C. albicans infections. Besides, in order to strengthen the immune system some cytokines might be used in addition to antifungal agents for the treatment.  相似文献   

5.
A polysaccharide-rich fraction (ATF) of medicinal mushroom Agaricus brasiliensis was evaluated on the candidacidal activity, H2O2 and nitric oxide (NO) production, and expression of mannose receptors by murine peritoneal macrophages. Mice received three intraperitoneal (i.p.) injections of ATF and after 48 h their peritoneal resident macrophages were assayed against Candida albicans yeast forms. The treatment increased fungicidal activity and it was associated with higher levels of H2O2, whereas NO production was not affected. We also found that the treatment enhances mannose receptor expression by peritoneal macrophages, which are involved in the attachment and phagocytosis of non-opsonized microorganisms. Treatment of animals with ATF was able to enhance the clearance of C. albicans during the first 6 h after the experimental i.p. infection. Our results suggest that this extract can increase host resistance against some infectious agents through the stimulation of microbicidal activity of macrophages.  相似文献   

6.
In this study we tested the hypothesis that after administration of a single intraperitoneal dose of concanavalin A (Con-A) to mice, the proportion of neutrophils and macrophages in the peritoneal exudate and their phagocytic and candidacidal activities should change with time. The number of neutrophils in the peritoneal exudate was greatly increased 6 h after administration of Con-A, and those cells were able to kill both intracellular and extracellular yeast and germ tube forms of Candida albicans. Addition of catalase to the culture medium reduced the killing of C. albicans, suggesting that the candidacidal activity depended on the myeloperoxidase system. The survival of mice pretreated with Con-A and submitted to an inoculum of C. albicans 6 h afterwards was twice higher than that of controls, which suggests that neutrophils were able to clear the experimental infection. One day after the treatment, the population of neutrophils in the exudate was about 45%, but after 2 days it was reduced to only 5% and the candidacidal activity was also reduced. After 4 days the exudate contained over 95% of macrophages, the candidacidal activity reached a maximum, and the phagocytosis mediated by both complement receptors and mannose receptors was increased. Uptake of FITC-mannose-BSA by macrophages was maximal on about the 4th day and was inhibited by mannan, suggesting that treatment with Con-A increased the activity of mannose receptors. These results support the hypothesis that activation of cellular immunity by Con-A occurred in two phases, one dominated by neutrophils, and the other by macrophages expressing increased activity of mannose receptors.  相似文献   

7.
Interaction of Candida albicans with Human Leukocytes and Serum   总被引:76,自引:0,他引:76       下载免费PDF全文
A quantitative assay of candidacidal activity based on differential staining of non-viable Candida albicans by methylene blue was developed and applied to studies of leukocytes from normal individuals and patients with fungal and other infections. Serum factors were necessary for optimal phagocytosis of C. albicans but lacked direct candidacidal activity. Normal human neutrophils (38 studies) killed 29.0 +/- 7.4% of ingested C. albicans in 1 hr. Eosinophils and monocytes killed a smaller percentage. Neutrophil candidacidal activity did not require protein or ribonucleic acid synthesis by the leukocyte but was inhibited by anaerobic conditions, potassium cyanide, and colchicine. Leukocytes of a patient with hereditary myeloperoxidase deficiency and of three children with chronic granulomatous disease phagocytized C. albicans normally, yet failed to kill them. Our data suggest that the neutrophil can play an important role in resistance to Candida infection and that the lysosomal enzyme myeloperoxidase and its oxidant substrate hydrogen peroxide are the major participants in neutrophil candidacidal activity.  相似文献   

8.
T Arai  Y Mikami  K Yokoyama 《Sabouraudia》1977,15(2):171-177
Studies of host-parasite relationships at the cellular level, using Candida albicans and rabbit alveolar macrophages or guinea pig neutrophils are presented. Guinea pig neutrophils killed the intracellular candida cells presumed by myeloperoxidase-halide-hydrogen peroxide system. In contrast, rabbit alveolar macrophages did not kill the intracellular candida cells although their phagocytic rate was almost comparable to that of neutrophils. Phagocytizing macrophages were eventually destroyed by the intracellular proliferation of candida cells and formation of germ tubes and pseudomycelia. No significant improvement of candidacidal activity was observed with macrophages from normal and immunized rabbits in immune serum. The mode of phagocytosis by macrophages and neutrophils were also studied under the scanning electron microscope.  相似文献   

9.
In the present study, we investigated the immunopotentiating activity of the immunomodulator tuftsin for the treatment of dose-dependent susceptible Candida albicans infection in a murine model. Our results demonstrated that tuftsin increases the susceptibility of C. albicans to phagocytosis by activating murine macrophages. Fluconazole used for the treatment of mice infected with C. albicans showed less in vivo efficacy and proved to be ineffective in the elimination of the infection from leukopenic mice even at higher doses. However, the antifungal activity of fluconazole against the same isolate of C. albicans significantly increased in tuftsin-pretreated mice and resulted in an improved survival rate in mice. The treated mice also showed less severity of infection as supported by a reduced fungal burden in their kidneys. This study indicates that the use of immunopotentiating substances can enhance the therapeutic efficacy of azole antifungal agents and thus can effectively combat azole-resistant fungal pathogens under conditions of immunosuppression.  相似文献   

10.
Abstract Mice immunized with ribosomes from Candida albicans are protected against experimental systemic candidiasis. In this study we investigated the candidacidal activity of spleen cells from immunized animals as measured by 51Cr release from pre-labelled yeast cells. It was found that the anti-candidal cytotoxic activity of splenocytes from immunized mice was significantly higher than that of spleen cells from non-immunized controls with various effector to target (E:T) ratios, but optimal results were obtained with an E:T ratio of 10:1. The cytotoxic activity of splenocytes as measured by the 51Cr release assay correlated well with the capacity of the cells to inhibit candidal growth as determined by quantitative plating. This candidacidal activity was not antibody dependent but increased killing was obtained by adding fresh (but not heat inactivated) mouse serum. The enhanced candidicidal activity was inhibited by removal of plastic- or nylon-adherent cells from the cell suspension but not by treatment with anti-Thy 1.2 serum and complement. The data indicate that a candidacidal cell population is induced in the spleens of animals immunized with C. albicans ribosomes.  相似文献   

11.
Killing of yeast cells of several species of Candida by murine phagocytic cells was assessed in vitro by a radiolabel release microassay and measurement of colony forming units. The most effective candidacidal phagocytes, i.e. polymorphonuclear and bone marrow cells, were able to kill equally well cells of any species or isolate tested, given sufficient time (4 h) and an appropriate effector: target ratio. However, C. guilliermondii, C. krusei and C. parapsilosis were killed by polymorphonuclear and bone marrow cells much more promptly (1 h) and at a significantly lower effector:target ratio than C. albicans, C. tropicalis and C. viswanathii. Moreover, there were immune effectors such as peritoneal resident macrophages and, mostly, spleen cells which were practically ineffective against C. albicans and C. tropicalis but showed significant activity against C. guilliermondii, C. krusei and C. parapsilosis, even in mice immuno-depressed with cyclophosphamide. Three isolates of C. albicans, differing in the capacity to form germ tubes, also differed in mouse virulence: the germ-tube forming isolate was the most virulent. However, they showed an identical pattern of susceptibility to killing by mouse immunoeffectors, suggesting that virulence is probably not due to the resistance of hyphal cell to phagocytosis.  相似文献   

12.
Two classes of fluconazole derivatives, (a) carboxylic acid esters and (b) fatty alcohol and carbohydrate phosphate esters, were synthesized and evaluated in vitro against Cryptococcus neoformans, Candida albicans, and Aspergillus niger. All carboxylic acid ester derivatives of fluconazole (1a-l), such as O-2-bromooctanoylfluconazole (1g, MIC=111 microg/mL) and O-11-bromoundecanoylfluconazole (1j, MIC=198 microg/mL), exhibited higher antifungal activity than fluconazole (MIC > or = 4444 microg/mL) against C. albicans ATCC 14053 in SDB medium. Several fatty alcohol phosphate triester derivatives of fluconazole, such as 2a, 2b, 2f, 2g, and 2h, exhibited enhanced antifungal activities against C. albicans and/or A. niger compared to fluconazole in SDB medium. For example, 2-cyanoethyl-omega-undecylenyl fluconazole phosphate (2b) with MIC value of 122 microg/mL had at least 36 times greater antifungal activity than fluconazole against C. albicans in SDB medium. Methyl-undecanyl fluconazole phosphate (2f) with a MIC value of 190 microg/mL was at least 3-fold more potent than fluconazole against A. niger ATCC 16404. All compounds had higher estimated lipophilicity and dermal permeability than those for fluconazole. These results demonstrate the potential of these antifungal agents for further development as sustained-release topical antifungal chemotherapeutic agents.  相似文献   

13.
Mice harbouring a null deletion mutation in the IFNgamma receptor gene were used to study the role of IFNgamma responsiveness during experimental systemic candidiasis of mucosal or haematogenous origin. After intravenous (i.v.) or intranasal (i.n.) challenge with Candida albicans the progression of infection and concomitant cellular and antibody anti-C. albicans immune responses were analysed. During the week following i.v. challenge, the rate of C. albicans multiplication in kidneys, liver and spleen was faster in IFNgammaR (-/-) than IFNgammaR (+/+) mice. As a result, IFNgammaR (-/-) mice perished earlier than IFNgammaR (+/+) mice when challenged with equal numbers of live yeast cells. However, the overall susceptibility of the two mouse strains, in terms of survival against different C. albicans challenge doses over a 60-day period, was similar. No differences were found in the cellular anti-C. albicans response generated by i.v. challenge in both mouse strains. In contrast the kinetics and strength of the serum anti-C. albicans antibody responses were markedly different. Significantly stronger, predominantly IgG2a antibody responses accompanied the eventual control of C. albicans infection in IFNgammaR (-/-) mice. Following intranasal challenge, there was no difference in the rate of C. albicans clearance from the lungs of IFNgammaR (-/-) and IFNgammaR (+/+) mice. However, 48 h after challenge, large, conspicuous abscesses appeared in the lungs, liver, kidneys and spleen of IFNgammaR (-/-) mice. These abscesses were characterised by the presence of C. albicans and abundant neutrophilic infiltrates, but very few macrophages. No such abscesses developed in i.n. challenged IFNgammaR (+/+) mice. In both mouse strains, i.n. challenge induced strong systemic anti-C. albicans cellular responses, but relatively low titre systemic antibody responses. Mucosal anti-C. albicans antibody responses were detected in IFNgammaR (+/+), but not IFNgammaR (-/-) mice. Splenic adherent macrophages obtained from IFNgammaR (-/-) mice exhibited a significantly lower candidacidal activity than those of IFNgammaR (+/+) mice, and as expected, were not responsive to IFNgamma. In summary, these data suggest that IFNgamma has a role in limiting C. albicans multiplication during the early stages of infection, as well as in preventing the development of C. albicans-associated abscesses. Activation of macrophages by IFNgamma might be pivotal in mediating this role.  相似文献   

14.
Mycobacterium tuberculosis multiplies within the macrophage phagosome and requires iron for growth. We examined the route(s) by which intracellular M. tuberculosis acquires iron. During intracellular growth of the virulent Erdman M. tuberculosis strain in human monocyte-derived macrophages (MDM), M. tuberculosis acquisition of (59)Fe from transferrin (TF) provided extracellularly (exogenous source) was compared with acquisition when MDM were loaded with (59)Fe from TF prior to M. tuberculosis infection (endogenous sources). M. tuberculosis (59)Fe acquisition required viable bacteria and was similar from exogenous and endogenous sources at 24 h and greater from exogenous iron at 48 h. Interferon-gamma treatment of MDM reduced (59)Fe uptake from TF 51% and TF receptor expression by 34%. Despite this, intraphagosomal M. tuberculosis iron acquisition in IFN-gamma-treated cells was decreased by only 30%. Macrophages from hereditary hemochromatosis patients have altered iron metabolism. Intracellular M. tuberculosis acquired markedly less iron in MDM from these individuals than in MDM from healthy donors, regardless of the iron source (exogenous and endogenous): 36 +/- 3.8% and 17 +/- 9.6% of control, respectively. Thus, intraphagosomal M. tuberculosis can acquire iron from both extracellular TF and endogenous macrophage sources. Acquisition of iron from macrophage cytoplasmic iron pools may be critical for the intracellular growth of M. tuberculosis. This acquisition is altered by IFN-gamma treatment to a small extent, but is markedly reduced in macrophages from hemochromatosis patients.  相似文献   

15.
The efficacy of allicin compared with fluconazole in alleviating systemic Candida albicans infections was evaluated both in vitro and in vivo through a systemic candidiasis mouse model. Determination of in vitro minimum inhibitory concentrations (MICs) for different C. albicans isolates revealed that both allicin and fluconazole showed different MICs that ranged from 0.05 to 12.5 μg mL(-1) and 0.25 to 16 μg mL(-1) , respectively. A time-kill study showed a significant effect of allicin (P<0.01) against C. albicans, comparable to that of fluconazole. Scanning electron microscopy observation revealed that, similar to fluconazole, allicin produced structural destruction of C. albicans cell surface at low MIC and lysis or puncture at high MIC concentrations. Treatment of BALB/c mice systemically infected with C. albicans showed that although the allicin treatment (at 5 mg kg(-1) day(-1) ) was slightly less efficacious than fluconazole treatment in terms of the fungal load reduction and host survival time, it was still effective against C. albicans in terms of mean survival time, which increased from 8.4 to 15.8 days. These results demonstrate the efficacy of anticandidal effects of allicin both in vitro and in an animal model of candidiasis and affirm the potential of allicin as an adjuvant therapy to fluconazole.  相似文献   

16.
LFampin 265-284, derived from bovine lactoferrin, has broad-spectrum antimicrobial activity against the yeast Candida albicans and several Gram-positive and Gram-negative bacteria. A glycine substitution scan was used to identify residues that are important for its candidacidal activity. Each single substitution of a positively charged residue led to considerable reduction in candidacidal activity, for each residue to a different extent. Substitution within the helix-facilitating N-terminal sequence DLIW had less severe effect; substitution of Ile and Trp led to a somewhat reduced potency. No substantial effects were found on the propensity to adopt a helical structure or to bind to C. albicans cells.  相似文献   

17.
Iron metabolism in mammals requires a complex and tightly regulated molecular network. The classical view of iron metabolism has been challenged over the past ten years by the discovery of several new proteins, mostly Fe (II) iron transporters, enzymes with ferro-oxydase (hephaestin or ceruloplasmin) or ferri-reductase (Dcytb) activity or regulatory proteins like HFE and hepcidin. Furthermore, a new transferrin receptor has been identified, mostly expressed in the liver, and the ability of the megalin-cubilin complex to internalise the urinary Fe (III)-transferrin complex in renal tubular cells has been highlighted. Intestinal iron absorption by mature duodenal enterocytes requires Fe (III) iron reduction by Dcytb and Fe (II) iron transport through apical membranes by the iron transporter Nramp2/DMT1. This is followed by iron transfer to the baso-lateral side, export by ferroportin and oxidation into Fe (III) by hephaestin prior to binding to plasma transferrin. Macrophages play also an important role in iron delivery to plasma transferrin through phagocytosis of senescent red blood cell, heme catabolism and recycling of iron. Iron egress from macrophages is probably also mediated by ferroportin and patients with heterozygous ferroportin mutations develop progressive iron overload in liver macrophages. Iron homeostasis at the level of the organism is based on a tight control of intestinal iron absorption and efficient recycling of iron by macrophages. Signalling between iron stores in the liver and both duodenal enterocytes and macrophages is mediated by hepcidin, a circulating peptide synthesized by the liver and secreted into the plasma. Hepcidin expression is stimulated in response to iron overload or inflammation, and down regulated by anemia and hypoxia. Hepcidin deficiency leads to iron overload and hepcidin overexpression to anemia. Hepcidin synthesis in response to iron overload seems to be controlled by the HFE molecule. Patients with hereditary hemochromatosis due to HFE mutation have impaired hepcidin synthesis and forced expression of an hepcidin transgene in HFE deficient mice prevents iron overload. These results open new therapeutic perspectives, especially with the possibility to use hepcidin or antagonists for the treatment of iron overload disorders.  相似文献   

18.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   

19.
20.
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-δ (PKCδ) and PI3K but not PKCα and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号