首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient concentrations, benthic algal biomass, dissolved oxygen (DO), and pH were measured in 70 or more streams during spring and summer in the Illinois River Watershed (IRW), which crosses the Oklahoma and Arkansas (USA) border, to determine whether injury to streams occurred and if that injury was related to spreading poultry waste on fields. Definitions of injury were based on Oklahoma water quality regulations and scientific literature. Phosphorus and nitrogen concentrations were each independently related to poultry house density (PHD) in watersheds and percent urban land use in watersheds. In addition, phosphorus and nitrogen concentrations were unusually high compared to regions with similar geology and hydrology. Molar N:P ratios were high and indicated that phosphorus was the most likely limiting nutrient. Phosphorus concentrations, as well as PHD and urban land use, were related to algal biomass during spring, but were less related during summer. A threshold response in cover of stream bottoms by nuisance filamentous green algae (NFGA: Cladophora, Rhizoclonium, and Oedogonium) during spring was observed at 27 μg TP l−1 using regression tree analysis. Great increases in average NFGA cover (from 4 to 36% cover) occurred with relatively small increases in TP concentration at the 27 μg TP l−1 threshold. Average concentrations of DO, variability in DO, and pH during spring were positively related to TP, chlorophyll a, and NFGA cover. Minimum DO during spring and early morning DO during summer were negatively related to TP concentration. Spring pH and summer DO frequently violated water quality requirements for protecting biodiversity that were established by the state of Oklahoma. We conclude that poultry house operations as well as urban activities, independently and interactively, pollute IRW streams with phosphorus, which resulted in injury to aesthetic condition and the potential for injury of biodiversity.  相似文献   

2.
Ciliate and bacterial densities and their link with eutrophication were studied in fourteen shallow lakes in northwest Spain. Total phosphorus (TP) in these lakes varied between 30 μg l−1 and 925 μg l−1 and chlorophyll a concentration (chla) between 0.5 μg l−1 and 107 μg l−1. Bacterial abundance ranged from 1 × 106 to 14 × 106 cells ml−1, while ciliate abundance ranged from 0.6 cells ml−1 to 229 cells ml−1. Lakes were classified into three trophic types from their TP and chla concentrations. Bacterial abundance was significantly correlated with trophic type, as well as with TP and with chla separately, whereas ciliate abundance was only correlated with chla. No significant relationship could be established between bacterial and ciliate abundance across the trophic gradient. A general pattern was observed in the ratios of bacterial abundance to TP and chla concentrations, of decreasing ratios with increases in the nutrient loading. This pattern was not found for ciliates. The dominant zooplankton group in 13 of the 14 lakes studied was Rotifera, which accounted for a mean of 71% of total zooplankton abundance (41% of zooplankton biomass). The positive correlation between bacteria and ciliates with this group, and the absence of any relationship with Cladocera suggest that top down control by cladocerans was weaker in our lakes than previously shown in northern European shallow lakes. Rotifers could be important predators of bacteria in the high-nutrient lakes of our study. Higher slopes of regressions on bacterial abundance towards the hypertrophic range indicate that top-down control was weaker in our lakes than in northern European shallow lakes.  相似文献   

3.
Responses of stream algal biomass to nutrient enrichment were studied in two regions where differences in hydrologic variability cause great differences in herbivory. Around northwestern Kentucky (KY) hydrologic variability constrains invertebrate biomass and their effects on algae, but hydrologic stability in Michigan (MI) streams permits accrual of high herbivore densities and herbivory of benthic algae. Multiple indicators of algal biomass and nutrient availability were measured in 104 streams with repeated sampling at each site over a 2−month period. Many measures of algal biomass and nutrient availability were positively correlated in both regions, however the amount of variation explained varied with measures of biomass and nutrient concentration and with region. Indicators of diatom biomass were higher in KY than MI, but were not related to nutrient concentrations in either region. Chl a and % area of substratum covered by Cladophora were positively correlated to nutrient concentrations in both regions. Cladophora responded significantly more to nutrients in MI than KY. Total phosphorus (TP) and total nitrogen (TN) explained similar amounts of variation in algal biomass, and not significantly more variation in biomass than dissolved nutrient concentrations. Low N:P ratios in the benthic algae indicated N as well as P may be limiting their accrual. Most observed responses in benthic algal biomass occurred in nutrient concentrations between 10 and 30 μg TP l−1 and between 400 and 1000 μg TN l−1.  相似文献   

4.
Changes from the 1970s to 2000s in phosphorus and chlorophyll levels, water transparency, zooplankton, and benthic communities in the upper, International Section of the St. Lawrence River were evaluated using trend data from limnological surveys. The influence of Lake Ontario as a source for riverine production was evident in the upper river. Total phosphorus levels from 1976 to 1978 (average ~20 μg/l) sampled during a period of nutrient pollution declined (to 6–7 μg/l) following abatement. As expected, water transparency indicated by summer Secchi depths showed an opposite response increasing from ~3.5 m in the 1970s to >10 m by 2003 but declined to 6–7 m in more recent years. Zooplankton communities have experienced declines in overall densities, and the community has changed but its primary components, Bosmina and Diacyclops remain. Ceriodaphnia lacustris abundance declined substantially from the 1970s to the recent time period while Chydorus sphaericus increased and Eurytemora affinis and Cercopagis pengoi had first appearances. In contrast, benthic invertebrate biomass increased substantially between time periods. Increases in families and occurrence of gastropods were observed, but the primary components–chironomids, amphipods, and oligochaetes–were consistent between the periods with the exception of dreissenid mussels. Dreissena was dominated by D. bugensis, and both D. bugensis and D. polymorpha show evidence of recent declines. Conversely, high abundance of round goby (Apollonia melanostomus) has promoted new trophic pathways. Downstream attenuation in nutrients and chlorophyll, and increased transparency suggest continued strong effects of Lake Ontario on the downstream river environment, but increased energy in the benthos has likely promoted greater in situ production.  相似文献   

5.
Diatom-inferred trophic history of IJsselmeer (The Netherlands)   总被引:1,自引:0,他引:1  
IJsselmeer was formed in 1932 through the closure of the Afsluitdijk that separated the artificial lake from the former Zuiderzee estuary. The palaeoecology of IJsselmeer was studied on a 63-cm-long sediment core. Lithology and microfossil data, particularly the diatom flora, clearly show the transition from the marine Zuiderzee into the freshwater IJsselmeer. Trophic conditions in IJsselmeer since 1932 have been inferred by qualitative and quantitative diatom-based approaches: by plotting the distribution of trophic categories based on published trophic indicator values, by a canonical correspondence analysis (CCA) yielding relative total phosphorus (TP) changes and by applying a transfer function in order to calculate TP concentrations. All three approaches indicate that IJsselmeer initially was meso- to eutrophic. A first hypertrophic period is indicated for the mid-1940s, likely due to internal loading. After 1960, the phosphorus load steadily increased and TP in IJsselmeer reached highest concentrations (ca. 150 μg l−1) in the 1980s as confirmed by monitoring data since 1975. The monitored data show that the TP concentration continuously decreased after 1985 due to successful environmental protection measures. This trend is not (or not yet) evidenced by the diatom data and thus, the diatom-inferred TP concentration. Guest editors: K. Buczkó, J. Korponai, J. Padisák & S. W. Starratt Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water  相似文献   

6.
We investigated the potential for using diatoms to monitor and assess nutrient enrichment in coastal plain streams using weighted-averaging inference models and diatom trophic indices. Samples were collected from low-gradient, clay- to sand-bottom streams in New Jersey (NJ), USA, using artificial substrates (diatometers). Multivariate analysis showed that conductivity was overall the most important explanatory variable. Total phosphorus (TP) explained a significant proportion of the variation in diatom species composition. There was statistical justification for development of inference models for TP but not for total nitrogen (TN). We developed and tested models for inferring TP using weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) regression and calibration techniques. We also created a diatom TP index by rescaling the inferred TP values. WA-PLS provided the best model (n = 38), which showed moderate predictive ability (r boot2 = 0.43; RMSEPboot = 0.30 log10 μg l−1 TP); it performed best at lower TP concentrations and tended to underestimate values above 100 μg l−1. The TP index performed well; it assigned the majority of the index scores to the correct nutrient category. TP models and indices developed for the Coastal Plain had lower predictive ability than those developed for northern NJ and streams in other comparable geographic regions of the US. This lower performance can be attributed primarily to a data gap in the TP gradient in the calibration dataset (lack of sites with TP concentrations between 240 and 560 μg l−1), and a smaller number of samples. We conclude that diatom-based TP inference models and artificial substrate sampling are useful for assessing and monitoring nutrient enrichment in coastal plain streams. Given the worldwide distribution of streams similar to those in this study, these tools should be widely applicable. Handling editor: D. Ryder  相似文献   

7.
The 1 mg/l phosphate effluent standard legislated in South Africa in 1980 in seven sensitive catchments, and ad hoc eutrophication-related requests, necessitated the monitoring of 53 impoundments throughout the country. Variables that were monitored, and are still being monitored in some cases, included nutrients, chlorophyll a, algal identification, suspended solids and other major inorganic constituents. The measurement of temperature and oxygen profiles was conducted on an ad hoc basis when the sites were visited. The results, as determined from data collected between 1989 and 1998, indicated a range of trophic states from oligotrophic to hyper-eutrophic in the sensitive catchments. The catchments that were covered in the survey are: the Vaal River, Crocodile River (North West Province), Pienaars River, Olifants River (Mpumalanga Province), Letaba River, Buffalo River, Berg River, White Mfolozi River, Mgeni River, Mlazi River and the Molopo River catchments.

The objective of this paper is to discuss the methods, variables and presentation for determining the trophic status of an impoundment for management purposes by using findings in the Bon Accord Dam, a small reservoir near Pretoria. The trophic status of selected impoundments was determined by using the mean total phosphorus (TP) concentrations, the nitrogen to phosphorus ratio, the mean chlorophyll a concentration, the presence of cyanobacteria and the turbidity (measured by means of Secchi disc readings) of the system.

The mean annual phosphorus concentrations dropped from more than 800μg/l to less than 100μg/l in three years, and have remained at that level since 1987. The authors suggest that further reductions in phosphorus input are necessary to prevent eutrophication in the reservoir.  相似文献   

8.
An experiment was carried out to evaluate the effects of phosphorus concentration (1, 4 and 10 mg l−1) and temperature (15 and 25°C) on chlorophyll a (chl a) contents and cell size/volume of green alga Scenedesmus obliquus and blue green alga Microcystis aeruginosa. Long-term field data from Lake Taihu, a large, shallow eutrophic lake between Jiangsu and Zhejiang Provinces, China, was also used to evaluate the effect of temperature on the model between chl a and total phosphorus (TP). The chl a content of both algae increased with an increase in phosphorus concentration and temperature. Temperatures showed a significantly different effect on chl a content of S. obliquus at a phosphorus concentration of 10 mg l−1, whereas there was no significant difference at the two lower phosphorus levels. For M. aeruginosa, temperatures presented significantly different effects on the chl a contents at three phosphorus concentrations. Chl a content of neither alga presented an interaction between the nutrient and the temperature. Long-term field data from Lake Taihu also indicated that the addition of temperature to the model increased predictability of chl a by TP. The length/diameter and volume of both algae were greater at the lower temperature and phosphorus concentration. Moderate negative correlations were observed between algal size, volume, and chl a content. Our results suggest that phosphorus concentration and temperature could change chl a contents and size in species-specific algal cells and that temperature should be considered when building the model of TP and chl a concentration.  相似文献   

9.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

10.
A dramatic increase in the breeding population of geese has occurred over the past few decades at Svalbard. This may strongly impact the fragile ecosystems of the Arctic tundra because many of the ultra-oligotrophic freshwater systems experience enrichment from goose feces. We surveyed 21 shallow tundra ponds along a gradient of nutrient enrichment based on exposure to geese. Concentrations of total phosphorus (P) and dissolved inorganic nitrogen (DIN) in the tundra ponds ranged from 2–76 to 2–23 μg l−1 respectively, yet there was no significant increase in phytoplankton biomass (measured as chlorophyll a; range: 0.6–7.3 μg l−1) along the nutrient gradient. This lack of response may be the result of the trophic structure of these ecosystems, which consists of only a two-trophic level food chain with high biomasses of the efficient zooplankton grazer Daphnia in the absence of fish and scarcity of invertebrate predators. Our results indicate that this may cause a highly efficient grazing control of phytoplankton in all ponds, supported by the fact that large fractions of the nutrient pools were bound in zooplankton biomass. The median percentage of Daphnia–N and Daphnia–P content to particulate (sestonic) N and P was 338 and 3009%, respectively, which is extremely high compared to temperate lakes. Our data suggest that Daphnia in shallow arctic ponds is heavily subsidized by major inputs of energy from other food sources (bacteria, benthic biofilm), which may be crucial to the persistence of strong top–down control of pelagic algae by Daphnia.  相似文献   

11.
We studied the trophic development of the past 30–100 years in eight moderately deep Dutch lakes based on their sedimentary fossil diatom assemblages. The dominant diatoms indicating meso- to eutrophic conditions were Aulacoseira subarctica, Cyclotella ocellata, C. cyclopuncta, C. meneghiniana, Puncticulata bodanica, Aulacoseira granulata, Cyclostephanos dubius, C. invisitatus, Stephanodiscus hantzschii, S. medius, and S. parvus. Ordination of diatom data separated the lakes into four groups according to their total phosphorus concentrations (TP), water supply, water management, and origin. The first group consists of dike-breach lakes, which were in stable eutrophic to hypertrophic conditions throughout the past century with diatom-inferred TP (DI-TP) concentrations of between 70 and 300 μg l−1. The main factors influencing these dike-breach lakes are river management, ground water supply of riverine origin, and local land use. The second group are artificial lakes of fluctuating oligo- to mesotrophic conditions and DI-TP concentrations of 10–30 μg l−1. Only one of the artificial lakes showed a DI-TP increase due to changes in catchment agricultural practice. A third group includes an artificial moat and an inland dike-breach lake with DI-TP concentrations of 50–100 μg l−1. The fourth group contains an individual dike-breach lake with stable mesotrophic conditions of 50 μg l−1 throughout the past century. Rather than showing a regional pattern, the studied lakes behave very individualistically with regard to their trophic history, reflecting changes in the local hydrology and in their nutrient sources.  相似文献   

12.
Potential body size-trophic position relationships of the Darkbarbel catfish Pelteobagrus vachelli (Richardson 1846) were examined using stable isotope analysis. Pelteobagrus vachelli is a benthic feeding fish from Lake Poyang, the largest freshwater lake in China. Two-source mixing model with mussel (Corbicula fluminea) and snail (Bellamya aeruginosa) as baseline primary consumers of planktonic and benthic food webs, respectively, was used to estimate contribution of carbon derived from planktonic vs. benthic food web. Results showed that as an indicator of trophic position, δ15N was negatively correlated with the body length and weight of the fish; on the other hand, as an indicator of the end-member food sources, δ13C was not correlated with fish size. The mixing model results showed that the averaged trophic position of our sampled 3.3–12.7 cm Pelteobagrus vachelli was 3.1 ± 0.2 and derived 68 ± 27% of their food from the benthic food web, confirming that the feeding behavior of the catfish favors benthic food sources.  相似文献   

13.
Phosphorus (P) to chlorophyll ratios and zooplankton–phytoplankton (Z:P) biomass ratios were assessed in 400 temperate lakes over a gradient of phosphorus (P) and with different fish communities. Most of the lakes in this survey were oligotrophic, with a median total P of 7.3 μg P L−1. Thus, the survey provided information on food web effects during the early phase of eutrophication. There was no tendency toward a reduced yield of autotrophs per unit of P over the gradient covered in this survey. The zooplankton yield per unit of P or chlorophyll a decreased slightly with increased nutrient concentrations, and Z:P biomass ratios decreased with fish community classes, reflecting increased fish predation pressure. However, the variability in biomass ratios within a given range of P and fish class was some 100 times higher than the difference over the gradients. This finding suggests that lake-specific properties, community composition, and food quality are by far the most important determinants of biomass ratios and probably also trophic efficiency in lakes; it further suggests that these factors are superimposed on the general effect of eutrophication, at least up to 30 μg P L−1.  相似文献   

14.
To date, studies examining the impact of agriculture on freshwater systems have been spatially confined (that is, single drainage basin or regional level). Across regions, there are considerable differences in a number of factors, including geology, catchment morphometry, and hydrology that affect water quality. Given this heterogeneity, it is unknown whether agricultural activities have a pervasive impact on lake trophic state across large spatial scales. To address this issue, we tested whether the proportion of agricultural land in a catchment (% Agr) could explain a significant portion of the variation in lake water quality at a broad inter-regional scale. As shallow, productive systems have been shown to be particularly susceptible to eutrophication, we further investigated how lake mean depth modulates the relationship between % Agr and lake total phosphorus (TP) concentration. We applied both traditional meta-analytic techniques and more sophisticated linear mixed-effects models to a dataset of 358 temperate lakes that spanned an extensive spatial gradient (5°E to 73°W) to address these issues. With meta-analytical techniques we detected an across-study correlation between TP and % Agr of 0.53 (one-tailed P-value = 0.021). The across-study correlation coefficient between TP and mean depth was substantially lower (r = −0.38; P = 0.057). With linear mixed-effects modeling, we detected among-study variability, which arises from differences in pre-impact (background) lake trophic state and in the relationship between lake mean depth and lake TP. To our knowledge, this is the first quantitative synthesis that defines the influence of agriculture on lake water quality at such a broad spatial scale. Syntheses such as these are required to define the global relationship between agricultural land-use and water quality.  相似文献   

15.
Temporal changes of biomass and dominant species in benthic algal communities were investigated in a littoral sand-beach zone in the north basin of Lake Biwa from December 1999 to September 2000. Chlorophyll-a amounts of benthic algal communities per unit area of the sandy sediments rapidly increased from late April to June. Increases in biomass of the benthic algal communities are considered to result from the propagation of filamentous green algae Oedogonium sp. and Spirogyra sp. The cell numbers of filamentous green algae and chlorophyll-a amounts of benthic algal communities at depths of 30 and 50cm at a station protected by a breakwater in May were significantly higher than those of a station exposed directly to wave activity. Thus, the biomass accumulation of the benthic algal communities seems to be regulated strongly by wave disturbance. The development of filamentous green algae may contribute to the increase in biomass of the benthic algal community and to the changes in seasonal patterns of biomass in the sand-beach zone of Lake Biwa. We consider that the development of the filamentous green algal community in the littoral zone of Lake Biwa is the result of eutrophication.  相似文献   

16.
Longitudinal distribution and abundance of macroinvertebrate communities were examined in relation to hydrochemical variables along the Chubut River in the Patagonian Precordillera and Plateau, Argentina. The Chubut River (>1000 km) is the largest river in the area and its basin is subject to multiple uses: agriculture, cattle raising, urbanization and the hydrological regime of the lower section is modified by a reservoir. Quantitative benthic samples were collected at 13 sites in the higher, middle and lower sections of the river basin. Sites were visited four times during 2004 and physicochemical parameters, chlorophyll a and particulate organic matter (POM) were assessed. Ninety-five taxa were collected in the study, with total species richness per site ranging from 5 to 51, and benthos density averaging 299–5024 ind m−2. Altitude and turbidity were implicated as important factors determining macroinvertebrate assemblages along the river system, and an eutrophication gradient was documented in the regulated/urbanized section of the main river. High turbidity (TSS) and sedimentation limited algal productivity in the middle basin. Below the dam, TSS, total phosphorus (TP) and POM decreased, whereas soluble reactive phosphorus (SRP) and chlorophyll a increased. Macroinvertebrate density increased three fold in this area possibly due to habitat improvement and enhanced trophic resources. Mean species richness did not change below the impoundment; however the community was dominated by gastropods, chironomids and flatworms. The Chubut River is complex and its biotic community reflects the landscape attributes. While benthic composition and density was governed by turbidity and flood disturbance in some river segments, a greater environmental heterogeneity resulted in an unexpected high number of species at the main channel upper basin.  相似文献   

17.
The spatial and temporal patterns of environmental heterogeneity in a Brazilian coastal lagoon were described by means of principal component analysis. Carapebus Lagoon has been subject to eutrophication, due to increased nutrient loading from domestic and industrial sewage. Spatial variations in the trophic state and temporal variations in the degree of marine influence are the major sources of environmental heterogeneity in this lagoon. The close and significant relation between total phosphorus and chlorophyll a (r2 = 60, p <0.05), and the high TN:TP ratios (up to 50:1) suggest that phosphorus might be the major nutrient controlling phytoplankton biomass in this lagoon. However, nitrogen might be more important as a growth-limiting nutrient in the eutrophic site of the lagoon, where high total phosphorus concentration (up to 338 μg l-1) and low TN:TP mass ratios (<10:1) were found. In a multiple regression model, total phosphorus and electric conductivity explained together a high and significant (R2=0.86, p < 0.001) amount of variance in chlorophyll yields. This predictive model of chlorophyll a is important as a tool for Carapebus lagoon management because it allows one to predict the algal biomass development of the lagoon in response to nutrients and marine water inputs resulting from man's activities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Human activities are radically changing natural land cover and increasing the delivery of soil, organic compounds, nutrients, toxic agrochemicals and other contaminants to aquatic ecosystems. The eutrophication of streams, rivers, lakes, reservoirs and costal zones is one of the most important consequences of human activities. In this study we assessed the trophic status of 28 wadeable stream reaches of the Santa Lucía basin, an important economic region of Uruguay. We developed a Trophic State Index of Benthic Invertebrates (TSI-BI), the first of its kind for South American lotic systems. The methodological approach consisted of determining the ambient trophic gradient via canonical correspondence analysis based on the benthic invertebrate abundance matrix and an environmental variable matrix. The rescaled site scores served as environmental variables in the weighted averaging model (WA), to weight the benthic abundances and then find the optimum and tolerance of each of the sampled genus. These data were used to estimate the TSI-BI scores. These scores, in conjunction with the total phosphorus concentrations (TP), were used to group the study reaches when running a cluster analysis. The basic statistical parameters of the defined groups serve as an input to identify the threshold values of TP and TSI-BI corresponding with the different trophic states. The boundaries of TSI-BI and TP demarcating mesotrophic and eutrophic states were 8 and 71 μg/l, respectively, and can be considered the limits between impaired and less altered reaches. The results also indicated that the trophic status of the reaches is related to land use intensity. A change in land use management seems to be critical for the preservation of one of the most important water supply systems in Uruguay.  相似文献   

19.
In tropical lakes relatively little is known about the general relationship between nutrient concentration and phytoplankton biomass. Using data from 192 lakes from tropical and subtropical regions we examine the relationship between total P (TP) and chlorophyll (Chl). The lakes are all located between 30° S to 31° N include systems in Asia, Africa, and North and South America but are dominated by Brazilian (n=79) and subtropical N. American (n=67) systems. The systems vary in morphometry (mean depth and lake area), trophic state as well total N (TN) to␣total P (TP) ratios and light extinction. Despite a nearly 500-fold range in TP concentrations (2–970 μg P l−1), there was a poorer relationship between log TP and log Chl (r 2=0.42) than is generally observed for temperate systems from either narrow or broad geographic regions. N limitation is not a likely explanation for the relatively weak TP–Chl relationship in the tropical–subtropical systems. Systems had high average TN:TP ratios and neither a multiple regression with log TP and log TN nor separating systems with high TN:TP (>17 by weight) improved the predictive power of the log TP–log Chl relationship.  相似文献   

20.
Non-diatom benthic algae from 104 streams in southern California were studied. We present a novel method for quantification of non-diatom algae that seeks to improve upon two important aspects of existing methods: separate processing of macroalgae and microalgae to avoid sample blending and consequent loss of macroalgal integrity, and for better viewing, counting a well-mixed microalgal subsample on a standard microscope slide instead of using a counting chamber. Our method provided high-quality taxonomic and quantitative data with low uncertainty. A total of 260 algal taxa were recorded, 180 of which were identified to species level. The median total algal biovolume per site was 22.7 mm3 cm−2 (range: <0.001–836.9 mm3 cm−2), the median species number was 11 (range: 2–43). Total algal biovolume and species number correlated with canopy cover (negative) and water temperature (positive), but not with measured water chemistry constituents. The proportion of heterocystous cyanobacteria and Zygnemataceae were strongly negatively correlated with nitrate concentrations and TN. The proportion of red algae was negatively correlated with TP. Species optima calculations combined with indicator species analysis identified >40 algal species as potential indicators of nutrient conditions. Proposed here is a practical tool for non-diatom algal quantification that enhances its application to stream bioassessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号