首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.  相似文献   

2.
We show that Saccharomyces cerevisiae strains lacking Trm8p/Trm82p tRNA m7G methyltransferase are temperature-sensitive in synthetic media containing glycerol. Bacterial TRM8 orthologs complement the growth defect of trm8-Delta, trm82-Delta, and trm8-Delta trm82-Delta double mutants, suggesting that bacteria employ a single subunit for Trm8p/Trm82p function. The growth phenotype of trm8 mutants correlates with lack of tRNA m7G methyltransferase activity in vitro and in vivo, based on analysis of 10 mutant alleles of trm8 and bacterial orthologs, and suggests that m7G modification is the cellular function important for growth. Initial examination of the roles of the yeast subunits shows that Trm8p has most of the functions required to effect m7G modification, and that a major role of Trm82p is to maintain cellular levels of Trm8p. Trm8p efficiently cross-links to pre-tRNAPhe in vitro in the presence or absence of Trm82p, in addition to its known residual tRNA m7G modification activity and its SAM-binding domain. Surprisingly, the levels of Trm8p, but not its mRNA, are severely reduced in a trm82-Delta strain. Although Trm8p can be produced in the absence of Trm82p by deliberate overproduction, the resulting protein is inactive, suggesting that a second role of Trm82p is to stabilize Trm8p in an active conformation.  相似文献   

3.
4.
S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm⁵U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G₁ and G₂, and that mcm⁵U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm⁵U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.  相似文献   

5.
S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm?U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G? and G?, and that mcm?U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm?U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.  相似文献   

6.
We previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5' --> 3' exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases. A variant of Trm2p, Trm2p(ctDelta76aa) lacking 76 amino acids at the C-terminus retained nuclease activities but not the methyl transferase activity. Both the native and the variant exhibited sensitivity to the endo-exonuclease inhibitor pentamidine. The Saccharomyces cerevisiae trm2(Delta232-1920nt) mutant (containing only the first 231 nucleotides of the TRM2 gene) displayed low sensitivity to methyl methane sulfonate (MMS) and suppressed the MMS sensitivity of rad52 mutants in trm2(Delta232-1920nt)rad52 double mutants. The deletion of KU80, in trm2(Delta232-1920nt) mutant background displayed higher MMS sensitivity supporting the view of the possible role of Trm2p in a competing repair pathway separate from NHEJ. In addition, trm2 exo1 double mutants were synergistically more sensitive to MMS and ionizing radiation than either of the single mutant suggesting that TRM2 and EXO1 can functionally complement each other. However, the C-terminal portion, required for its methyl transferase activity was found not important for DNA repair. These results propose an important role for TRM2 in DNA repair with a potential involvement of its nuclease function in homologous recombination based repair of DNA DSBs.  相似文献   

7.
Rapid tRNA decay can result from lack of nonessential modifications   总被引:10,自引:0,他引:10  
The biological role of many nonessential tRNA modifications outside of the anticodon remains elusive despite their evolutionary conservation. We show here that m7G46 methyltransferase Trm8p/Trm82p acts as a hub of synthetic interactions with several tRNA modification enzymes, resulting in temperature-sensitive growth. Analysis of three double mutants indicates reduced levels of tRNA(Val(AAC)), consistent with a role of the corresponding modifications in maintenance of tRNA levels. Detailed examination of a trm8-delta trm4-delta double mutant demonstrates rapid degradation of preexisting tRNA(Val(AAC)) accompanied by its de-aminoacylation. Multiple copies of tRNA(Val(AAC)) suppress the trm8-delta trm4-delta growth defect, directly implicating this tRNA in the phenotype. These results define a rapid tRNA degradation (RTD) pathway that is independent of the TRF4/RRP6-dependent nuclear surveillance pathway. The degradation of an endogenous tRNA species at a rate typical of mRNA decay demonstrates a critical role of nonessential modifications for tRNA stability and cell survival.  相似文献   

8.
A characteristic feature of tRNAs is the numerous modifications found throughout their sequences, which are highly conserved and often have important roles. Um(44) is highly conserved among eukaryotic cytoplasmic tRNAs with a long variable loop and unique to tRNA(Ser) in yeast. We show here that the yeast ORF YPL030w (now named TRM44) encodes tRNA(Ser) Um(44) 2'-O-methyltransferase. Trm44 was identified by screening a yeast genomic library of affinity purified proteins for activity and verified by showing that a trm44-delta strain lacks 2'-O-methyltransferase activity and has undetectable levels of Um(44) in its tRNA(Ser) and by showing that Trm44 purified from Escherichia coli 2'-O-methylates U(44) of tRNA(Ser) in vitro. Trm44 is conserved among metazoans and fungi, consistent with the conservation of Um(44) in eukaryotic tRNAs, but surprisingly, Trm44 is not found in plants. Although trm44-delta mutants have no detectable growth defect, TRM44 is required for survival at 33 degrees C in a tan1-delta mutant strain, which lacks ac(4)C12 in tRNA(Ser) and tRNA(Leu). At nonpermissive temperature, a trm44-delta tan1-delta mutant strain has reduced levels of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), but not other tRNA(Ser) or tRNA(Leu) species. The trm44-delta tan1-delta growth defect is suppressed by addition of multiple copies of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), directly implicating these tRNA(Ser) species in this phenotype. The reduction of specific tRNA(Ser) species in a trm44-delta tan1-delta mutant underscores the importance of tRNA modifications in sustaining tRNA levels and further emphasizes that tRNAs undergo quality control.  相似文献   

9.
The 3-methylcytidine (m3C) modification is widely found in eukaryotic species of tRNA(Ser), tRNA(Thr), and tRNA(Arg); at residue 32 in the anti-codon loop; and at residue e2 in the variable stem of tRNA(Ser). Little is known about the function of this modification or about the specificity of the corresponding methyltransferase, since the gene has not been identified. We have used a primer extension assay to screen a battery of methyltransferase candidate knockout strains in the yeast Saccharomyces cerevisiae, and find that tRNA(Thr(IGU)) from abp140-Δ strains lacks m3C. Curiously, Abp140p is composed of a poorly conserved N-terminal ORF fused by a programed +1 frameshift in budding yeasts to a C-terminal ORF containing an S-adenosylmethionine (SAM) domain that is highly conserved among eukaryotes. We show that ABP140 is required for m3C modification of substrate tRNAs, since primer extension is similarly affected for all tRNA species expected to have m3C and since quantitative analysis shows explicitly that tRNA(Thr(IGU)) from an abp140-Δ strain lacks m3C. We also show that Abp140p (now named Trm140p) purified after expression in yeast or Escherichia coli has m3C methyltransferase activity, which is specific for tRNA(Thr(IGU)) and not tRNA(Phe) and occurs specifically at C??. We suggest that the C-terminal ORF of Trm140p is necessary and sufficient for activity in vivo and in vitro, based on analysis of constructs deleted for most or all of the N-terminal ORF. We also suggest that m3C has a role in translation, since trm140-Δ trm1-Δ strains (also lacking m2,2G??) are sensitive to low concentrations of cycloheximide.  相似文献   

10.
To determine the function of the enzyme transfer ribonucleic acid (tRNA) nucleotidyltransferase in vivo, five mutants of Escherichia coli containing low levels of this enzyme were isolated. Since no selection procedure for such mutants existed, these strains were isolated by assay of large numbers of colonies from a heavily mutagenized stock. A procedure employing cells made permeable to tRNA and ATP was used to screen the large number of colonies required for the isolation. All the mutants contained less than 20% of the normal level of the AMP-incorporating activity of tRNA nucleotidyltransferase in extracts prepared by several methods, and the best mutant contained only about 2% of this activity. Three of the mutants also had equally low levels of the cytidine 5'-monophosphate-incorporating activity of the enzyme. Despite these low activities, the mutant strains displayed relatively normal growth characteristics at all temperatures examined. The enzyme in the mutant strains was not temperature sensitive, nor were any other abnormal biochemical properties detected. tRNA isolated from the mutant strains was missing significant amounts of its 3' terminal adenosine 5'-monophosphate residue, amounting to 10 to 15% in the best mutant. However, only small amounts of the terminal cytidine 5'-monophosphate residue were missing. The results indicate that tRNA nucleotidyltransferase is involved in some aspect of synthesis or repair of the 3' terminus of tRNA, and that the enzyme is present in large excess over its requirements for this function.  相似文献   

11.
Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.  相似文献   

12.
The Pichia acaciae killer toxin (PaT) arrests yeast cells in the S-phase of the cell cycle and induces DNA double-strand breaks (DSBs). Surprisingly, loss of the tRNA-methyltransferase Trm9 – along with the Elongator complex involved in synthesis of 5-methoxy-carbonyl-methyl (mcm5) modification in certain tRNAs – conferred resistance against PaT. Overexpression of mcm5-modified tRNAs identified tRNAGln(UUG) as the intracellular target. Consistently, toxin-challenged cells displayed reduced levels of tRNAGln and in vitro the heterologously expressed active toxin subunit disrupts the integrity of tRNAGln(UUG). Other than Kluyveromyces lactis zymocin, an endonuclease specific for tRNAGlu(UUC), affecting its target in a mcm5-dependent manner, PaT exerts activity also on tRNAGln lacking such modification. As sensitivity is restored in trm9 elp3 double mutants, target tRNA cleavage is selectively inhibited by incomplete wobble uridine modification, as seen in trm9 , but not in elp3 or trm9 elp3 cells. In addition to tRNAGln(UUG), tRNAGln(CUG) is also cleaved in vitro and overexpression of the corresponding gene increased resistance. Consistent with tRNAGln(CUG) as an additional TRM9 -independent target, overexpression of PaT's tRNase subunit abolishes trm9 resistance. Most interestingly, a functional DSB repair pathway confers PaT but also zymocin resistance, suggesting DNA damage to occur generally concomitant with specific tRNA offence.  相似文献   

13.
In Saccharomyces cerevisiae, a two-subunit methyltransferase (Mtase) encoded by the essential genes TRM6 and TRM61 is responsible for the formation of 1-methyladenosine, a modified nucleoside found at position 58 in tRNA that is critical for the stability of tRNA(Met)i The crystal structure of the homotetrameric m1A58 tRNA Mtase from Mycobacterium tuberculosis, TrmI, has been solved and was used as a template to build a model of the yeast m1A58 tRNA Mtase heterotetramer. We altered amino acids in TRM6 and TRM61 that were predicted to be important for the stability of the heteroligomer based on this model. Yeast strains expressing trm6 and trm61 mutants exhibited growth phenotypes indicative of reduced m1A formation. In addition, recombinant mutant enzymes had reduced in vitro Mtase activity. We demonstrate that the mutations introduced do not prevent heteroligomer formation and do not disrupt binding of the cofactor S-adenosyl-L-methionine. Instead, amino acid substitutions in either Trm6p or Trm61p destroy the ability of the yeast m1A58 tRNA Mtase to bind tRNA(Met)i, indicating that each subunit contributes to tRNA binding and suggesting a structural alteration of the substrate-binding pocket occurs when these mutations are present.  相似文献   

14.
15.
Using mutants (tgt, mnmA(asuE, trmU), mnmE(trmE), miaA, miaB, miaE, truA(hisT), truB) of either Escherichia coli or Salmonella enterica serovar Typhimurium and the trm5 mutant of Saccharomyces cerevisiae, we have analyzed the influence by the modified nucleosides Q34, mnm(5)s(2)U34, ms(2)io(6)A37, Psi39, Psi55, m(1)G37, and yW37 on -1 frameshifts errors at various heptameric sequences, at which at least one codon is decoded by tRNAs having these modified nucleosides. The frequency of -1 frameshifting was the same in congenic strains only differing in the allelic state of the various tRNA modification genes. In fact, in one case (deficiency of mnm(5)s(2)U34), we observed a reduced ability of the undermodified tRNA to make a -1 frameshift error. These results are in sharp contrast to earlier observations that tRNA modification prevents +1 frameshifting suggesting that the mechanisms by which -1 and +1 frameshift errors occur are different. Possible mechanisms explaining these results are discussed.  相似文献   

16.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

17.
Epistatic interactions between four rad loci in yeast   总被引:4,自引:0,他引:4  
Haploid yeast strains carrying mutations in two or more of four ad genes were contrusted by tetrad dissection, and the UV survival of these strains was measured. It was found that (with one exception) double mutant strains were not significantly more sensitive than the most sensitive single mutants, for strains involving mutant loci rad 1, rad 3 and rad 4. The exception was the double mutant rad 1–5 rad 4-4, but another double mutant involving different alleles of the the same loci did not show an enhanced UV sensitivity. Triple and quadruple mutants also failed to show a significantly increased UV sensitivity with respect to the single mutants. The results indicate that all these four mutant loci confer UV sensitivity by the same mechanism, and it is suggested that the wild-type alleles mediate excision-repair of UV-induced DNA lesions. Enhanced sensitivity of the genotype rad 1–5 rad 4-4 is attributed to leakiness of these alleles.  相似文献   

18.
The trm1 mutation of Saccharomyces cerevisiae is a single nuclear mutation that affects a specific base modification of both cytoplasmic and mitochondrial tRNA. Transfer RNA isolated from trm1 cells lacks the modified base N2,N2-dimethylguanosine, and extracts from these cells do not have detectable N2,N2-dimethylguanosine-specific tRNA methyltransferase activity. As part of our efforts to determine how this mutation affects enzyme activities in two different cellular compartments we have isolated the TRM1 locus by genetic complementation. The TRM1 locus restores the N2,N2-dimethylguanosine modification to both cytoplasmic and mitochondrial tRNA in trm1 cells. An open reading frame in this TRM1 gene is essential for complementation of the trm1 phenotype. Expression of this open reading frame in Escherichia coli converts the organism from one that neither makes N2,N2-dimethylguanosine nor has N2,N2-dimethylguanosine-specific tRNA methyltransferase activity into one that does. This result suggests that the TRM1 locus is the structural gene for the tRNA modification enzyme and that both nuclear/cytoplasmic and mitochondrial forms of the methyltransferase are produced from the same gene.  相似文献   

19.
Kluyveromyces lactis killer strains secrete a heterotrimeric toxin (zymocin), which causes an irreversible growth arrest of sensitive yeast cells. Despite many efforts, the target(s) of the cytotoxic gamma-subunit of zymocin has remained elusive. Here we show that three tRNA species tRNA(Glu)(mcm(5)s(2)UUC), tRNA(Lys)(mcm(5)s(2)UUU), and tRNA(Gln)(mcm(5)s(2)UUG) are the targets of gamma-toxin. The toxin inhibits growth by cleaving these tRNAs at the 3' side of the modified wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). Transfer RNA lacking a part of or the entire mcm(5) group is inefficiently cleaved by gamma-toxin, explaining the gamma-toxin resistance of the modification-deficient trm9, elp1-elp6, and kti11-kti13 mutants. The K. lactis gamma-toxin is the first eukaryotic toxin shown to target tRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号