首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY: With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. Availability and Implementation: A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org CONTACT: andreas@sdsc.edu; pbourne@ucsd.edu.  相似文献   

2.
SLAM is a program that simultaneously aligns and annotates pairs of homologous sequences. The SLAM web server integrates SLAM with repeat masking tools and the AVID alignment program to allow for rapid alignment and gene prediction in user submitted sequences. Along with annotations and alignments for the submitted sequences, users obtain a list of predicted conserved non-coding sequences (and their associated alignments). The web site also links to whole genome annotations of the human, mouse and rat genomes produced with the SLAM program. The server can be accessed at http://bio.math.berkeley.edu/slam.  相似文献   

3.
The Synergizer is a database and web service that provides translations of biological database identifiers. It is accessible both programmatically and interactively. AVAILABILITY: The Synergizer is freely available to all users inter-actively via a web application (http://llama.med.harvard.edu/synergizer/translate) and programmatically via a web service. Clients implementing the Synergizer application programming interface (API) are also freely available. Please visit http://llama.med.harvard.edu/synergizer/doc for details.  相似文献   

4.
Computational methods such as sequence alignment and motif construction are useful in grouping related proteins into families, as well as helping to annotate new proteins of unknown function. These methods identify conserved amino acids in protein sequences, but cannot determine the specific functional or structural roles of conserved amino acids without additional study. In this work, we present 3MATRIX (http://3matrix.stanford.edu) and 3MOTIF (http://3motif.stanford.edu), a web-based sequence motif visualization system that displays sequence motif information in its appropriate three-dimensional (3D) context. This system is flexible in that users can enter sequences, keywords, structures or sequence motifs to generate visualizations. In 3MOTIF, users can search using discrete sequence motifs such as PROSITE patterns, eMOTIFs, or any other regular expression-like motif. Similarly, 3MATRIX accepts an eMATRIX position-specific scoring matrix, or will convert a multiple sequence alignment block into an eMATRIX for visualization. Each query motif is used to search the protein structure database for matches, in which the motif is then visually highlighted in three dimensions. Important properties of motifs such as sequence conservation and solvent accessible surface area are also displayed in the visualizations, using carefully chosen color shading schemes.  相似文献   

5.
TMpro is a transmembrane (TM) helix prediction algorithm that uses language processing methodology for TM segment identification. It is primarily based on the analysis of statistical distributions of properties of amino acids in transmembrane segments. This article describes the availability of TMpro on the internet via a web interface. The key features of the interface are: (i) output is generated in multiple formats including a user-interactive graphical chart which allows comparison of TMpro predicted segment locations with other labeled segments input by the user, such as predictions from other methods. (ii) Up to 5000 sequences can be submitted at a time for prediction. (iii) TMpro is available as a web server and is published as a web service so that the method can be accessed by users as well as other services depending on the need for data integration. Availability: http://linzer.blm.cs.cmu.edu/tmpro/ (web server and help), http://blm.sis.pitt.edu:8080/axis/services/TMProFetcherService (web service).  相似文献   

6.
SUMMARY: MuSiC is a web server to perform the constrained alignment of a set of sequences, such that the user-specified residues/nucleotides are aligned with each other. The input of the MuSiC system consists of a set of protein/DNA/RNA sequences and a set of user-specified constraints, each with a fragment of residue/nucleotide that (approximately) appears in all input sequences. The output of MuSiC is a constrained multiple sequence alignment in which the fragments of the input sequences whose residues/nucleotides exhibit a given degree of similarity to a constraint are aligned together. The current MuSiC system is implemented in Java language and can be accessed via a simple web interface. AVAILABILITY: http://genome.life.nctu.edu.tw/MUSIC  相似文献   

7.
8.
Summary: ROBIN is a web server for analyzing genome rearrangementof block-interchanges between two chromosomal genomes. It takestwo or more linear/circular chromosomes as its input, and computesthe number of minimum block-interchange rearrangements betweenany two input chromosomes for transforming one chromosome intoanother and also determines an optimal scenario taking thisnumber of rearrangements. The input can be either bacterial-sizesequence data or landmark-order data. If the input is sequencedata, ROBIN will automatically search for the identical landmarksthat are the homologous/conserved regions shared by all theinput sequences. Availability: ROBIN is freely accessed at http://genome.life.nctu.edu.tw/ROBIN Contact: cllu{at}mail.nctu.edu.tw  相似文献   

9.
Mika S  Rost B 《Nucleic acids research》2003,31(13):3789-3791
UniqueProt is a practical and easy to use web service designed to create representative, unbiased data sets of protein sequences. The largest possible representative sets are found through a simple greedy algorithm using the HSSP-value to establish sequence similarity. UniqueProt is not a real clustering program in the sense that the 'representatives' are not at the centres of well-defined clusters since the definition of such clusters is problem-specific. Overall, UniqueProt is a reasonable fast solution for bias in data sets. The service is accessible at http://cubic.bioc.columbia.edu/services/uniqueprot; a command-line version for Linux is downloadable from this web site.  相似文献   

10.
Chou WY  Pai TW  Jiang TY  Chou WI  Tang CY  Chang MD 《PloS one》2011,6(9):e24814
Carbohydrate binding modules (CBMs) are found in polysaccharide-targeting enzymes and increase catalytic efficiency. Because only a relatively small number of CBM structures have been solved, computational modeling represents an alternative approach in conjunction with experimental assessment of CBM functionality and ligand-binding properties. An accurate target-template sequence alignment is the crucial step during homology modeling. However, low sequence identities between target/template sequences can be a major bottleneck. We therefore incorporated the predicted hydrophilic aromatic residues (HARs) and secondary structure elements into our feature-incorporated alignment (FIA) algorithm to increase CBM alignment accuracy. An alignment performance comparison for FIA and six others was made, and the greatest average sequence identities and similarities were achieved by FIA. In addition, structure models were built for 817 representative CBMs. Our models possessed the smallest average surface-potential z scores. Besides, a large true positive value for liagnd-binding aromatic residue prediction was obtained by HAR identification. Finally, the pre-simulated CBM structures have been deposited in the Database of Simulated CBM structures (DS-CBMs). The web service is publicly available at http://dscbm.life.nthu.edu.tw/ and http://dscbm.cs.ntou.edu.tw/.  相似文献   

11.

Background

Vitamins are typical ligands that play critical roles in various metabolic processes. The accurate identification of the vitamin-binding residues solely based on a protein sequence is of significant importance for the functional annotation of proteins, especially in the post-genomic era, when large volumes of protein sequences are accumulating quickly without being functionally annotated.

Results

In this paper, a new predictor called TargetVita is designed and implemented for predicting protein-vitamin binding residues using protein sequences. In TargetVita, features derived from the position-specific scoring matrix (PSSM), predicted protein secondary structure, and vitamin binding propensity are combined to form the original feature space; then, several feature subspaces are selected by performing different feature selection methods. Finally, based on the selected feature subspaces, heterogeneous SVMs are trained and then ensembled for performing prediction.

Conclusions

The experimental results obtained with four separate vitamin-binding benchmark datasets demonstrate that the proposed TargetVita is superior to the state-of-the-art vitamin-specific predictor, and an average improvement of 10% in terms of the Matthews correlation coefficient (MCC) was achieved over independent validation tests. The TargetVita web server and the datasets used are freely available for academic use at http://csbio.njust.edu.cn/bioinf/TargetVita or http://www.csbio.sjtu.edu.cn/bioinf/TargetVita.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-297) contains supplementary material, which is available to authorized users.  相似文献   

12.
Evaluation of protein structure prediction methods is difficult and time-consuming. Here, we describe EVA, a web server for assessing protein structure prediction methods, in an automated, continuous and large-scale fashion. Currently, EVA evaluates the performance of a variety of prediction methods available through the internet. Every week, the sequences of the latest experimentally determined protein structures are sent to prediction servers, results are collected, performance is evaluated, and a summary is published on the web. EVA has so far collected data for more than 3000 protein chains. These results may provide valuable insight to both developers and users of prediction methods. AVAILABILITY: http://cubic.bioc.columbia.edu/eva. CONTACT: eva@cubic.bioc.columbia.edu  相似文献   

13.
WebAllergen is a web server that predicts the potential allergenicity of proteins. The query protein will be compared against a set of prebuilt allergenic motifs that have been obtained from 664 known allergen proteins. The query will also be compared with known allergens that do not have detectable allergenic motifs. Moreover, users are allowed to upload their own allergens as alternative training sequences on which a new set of allergenic motifs will be built. The query sequences can also be compared with these motifs. AVAILABILITY: http://weballergen.bii.a-star.edu.sg/  相似文献   

14.
MOTIVATION: Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS: In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions. The total prediction accuracies reach 91.4% for three subcellular locations in prokaryotic organisms and 79.4% for four locations in eukaryotic organisms. Predictions by our approach are robust to errors in the protein N-terminal sequences. This new approach provides superior prediction performance compared with existing algorithms based on amino acid composition and can be a complementary method to other existing methods based on sorting signals. AVAILABILITY: A web server implementing the prediction method is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/. SUPPLEMENTARY INFORMATION: Supplementary material is available at http://www.bioinfo.tsinghua.edu.cn/SubLoc/.  相似文献   

15.
MOTIVATION: Biologists frequently align multiple biological sequences to determine consensus sequences and/or search for predominant residues and conserved regions. Particularly, determining conserved regions in an alignment is one of the most important activities. Since protein sequences are often several-hundred residues or longer, it is difficult to distinguish biologically important conserved regions (motifs or domains) from others. The widely used tools, Logos, Al2co, Confind, and the entropy-based method, often fail to highlight such regions. Thus a computational tool that can highlight biologically important regions accurately will be highly desired. RESULTS: This paper presents a new scoring scheme ARCS (Aggregated Related Column Score) for aligned biological sequences. ARCS method considers not only the traditional character similarity measure but also column correlation. In an extensive experimental evaluation using 533 PROSITE patterns, ARCS is able to highlight the motif regions with up to 77.7% accuracy corresponding to the top three peaks. AVAILABILITY: The source code is available on http://bio.informatics.indiana.edu/projects/arcs and http://goldengate.case.edu/projects/arcs  相似文献   

16.
The apple (Malus domestica) is one of the most economically important fruit crops in the world, due its importance to human nutrition and health. To analyze the function and evolution of different apple genes, we developed apple gene function and gene family database (AppleGFDB) for collecting, storing, arranging, and integrating functional genomics information of the apple. The AppleGFDB provides several layers of information about the apple genes, including nucleotide and protein sequences, chromosomal locations, gene structures, and any publications related to these annotations. To further analyze the functional genomics data of apple genes, the AppleGFDB was designed to enable users to easily retrieve information through a suite of interfaces, including gene ontology, protein domain and InterPro. In addition, the database provides tools for analyzing the expression profiles and microRNAs of the apple. Moreover, all of the analyzed and collected data can be downloaded from the database. The database can also be accessed using a convenient web server that supports a full-text search, a BLAST sequence search, and database browsing. Furthermore, to facilitate cooperation among apple researchers, AppleGFDB is presented in a user-interactive platform, which provides users with the opportunity to modify apple gene annotations and submit publication information for related genes. AppleGFDB is available at http://www.applegene.org or http://gfdb.sdau.edu.cn/.  相似文献   

17.
MOTIVATION: Protein-protein interaction, mediated by protein interaction sites, is intrinsic to many functional processes in the cell. In this paper, we propose a novel method to discover patterns in protein interaction sites. We observed from protein interaction networks that there exist a kind of significant substructures called interacting protein group pairs, which exhibit an all-versus-all interaction between the two protein-sets in such a pair. The full-interaction between the pair indicates a common interaction mechanism shared by the proteins in the pair, which can be referred as an interaction type. Motif pairs at the interaction sites of the protein group pairs can be used to represent such interaction type, with each motif derived from the sequences of a protein group by standard motif discovery algorithms. The systematic discovery of all pairs of interacting protein groups from large protein interaction networks is a computationally challenging problem. By a careful and sophisticated problem transformation, the problem is solved using efficient algorithms for mining frequent patterns, a problem extensively studied in data mining. RESULTS: We found 5349 pairs of interacting protein groups from a yeast interaction dataset. The expected value of sequence identity within the groups is only 7.48%, indicating non-homology within these protein groups. We derived 5343 motif pairs from these group pairs, represented in the form of blocks. Comparing our motifs with domains in the BLOCKS and PRINTS databases, we found that our blocks could be mapped to an average of 3.08 correlated blocks in these two databases. The mapped blocks occur 4221 out of total 6794 domains (protein groups) in these two databases. Comparing our motif pairs with iPfam consisting of 3045 interacting domain pairs derived from PDB, we found 47 matches occurring in 105 distinct PDB complexes. Comparing with another putative domain interaction database InterDom, we found 203 matches. AVAILABILITY: http://research.i2r.a-star.edu.sg/BindingMotifPairs/resources. SUPPLEMENTARY INFORMATION: http://research.i2r.a-star.edu.sg/BindingMotifPairs and Bioinformatics online.  相似文献   

18.
SUMMARY: TargetDB is a relational database designed to represent data on protein targeting sequences, mutant signals, subcellular targets and source organisms. AVAILABILITY: TargetDB is accessible at http://molbio.nmsu.edu:81. The web interface supports both direct data authoring and database query functions. CONTACT: moconnel@nmsu. edu, tao_wei@hms.harvard.edu  相似文献   

19.
20.
Protein attribute prediction from primary sequences is an important task and how to extract discriminative features is one of the most crucial aspects. Because single-view feature cannot reflect all the information of a protein, fusing multi-view features is considered as a promising route to improve prediction accuracy. In this paper, we propose a novel framework for protein multi-view feature fusion: first, features from different views are parallely combined to form complex feature vectors; Then, we extend the classic principal component analysis to the generalized principle component analysis for further feature extraction from the parallely combined complex features, which lie in a complex space. Finally, the extracted features are used for prediction. Experimental results on different benchmark datasets and machine learning algorithms demonstrate that parallel strategy outperforms the traditional serial approach and is particularly helpful for extracting the core information buried among multi-view feature sets. A web server for protein structural class prediction based on the proposed method (COMSPA) is freely available for academic use at: http://www.csbio.sjtu.edu.cn/bioinf/COMSPA/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号