首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

2.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

3.
Mitochondria in Ca2+ Signaling and Apoptosis   总被引:8,自引:0,他引:8  
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injuryand programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolicCa2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanismsby which they take up and release Ca2+ across their inner membrane. These transport processesfunction to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitivecellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ effluxpathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occursby the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. Duringcellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP,disruption of mitochondrial membrane potential (m) and cell death. In apoptosis signaling,collapse of ;m and cytochrome c release from mitochondria occur followed by activationof caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signalingprotein from the cytosol to the mitochondrial membrane, is another step during thisapoptosis-signaling pathway. The role of permeability transition in the context of cell death in relationto Bcl-2 family of proteins is discussed.  相似文献   

4.
5.
The ability to deliver calcium to the osteoid is critical to osteoblast function as a regulator of bone calcification. There are two known transmembrane proteins capable of translocating calcium out of the osteoblast, the Na(+)/Ca(2+) exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). In this study, we reveal the presence of the NCX3 isoform in primary osteoblasts and examine the expression of NCX1, NCX3, and PMCA1 during osteoblast differentiation. The predominant NCX isoform expressed by osteoblasts is NCX3. NCX1 also is expressed, but at low levels. Both NCX isoforms are expressed at nearly static levels throughout differentiation. In contrast, PMCA expression peaks at 8 days of culture, early in osteoblast differentiation, but declines thereafter. Immunocytochemical co-detection of NCX and PMCA reveal that NCX is positioned along surfaces of the osteoblast adjacent to osteoid, while PMCA is localized to plasma membrane sites distal to the osteoid. The expression pattern and spatial distribution of NCX support a role as a regulator of calcium efflux from osteoblasts required for calcification. The expression pattern and spatial distribution of PMCA makes its role in the mineralization process unlikely and suggests a role in calcium homeostasis following signaling events.  相似文献   

6.
Precise regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is achieved by the coordinated function of Ca(2+) channels and Ca(2+) buffers. Neuronal differentiation induces up-regulation of Ca(2+) channels. However, little is known about the effects of differentiation on the expression of the plasma membrane Ca(2+)-ATPase (PMCA), the principal Ca(2+) extrusion mechanism in neurons. In this study, we examined the regulation of PMCA expression during differentiation of the human neuroblastoma cell line IMR-32. [Ca(2+)](i) was monitored in single cells using indo-1 microfluorimetry. When the Ca(2+)-ATPase of the endoplasmic reticulum was blocked by cyclopiazonic acid, [Ca(2+)](i) recovery after small depolarization-induced Ca(2+) loads was governed primarily by PMCAs. [Ca(2+)](i) returned to baseline by a process described by a monoexponential function in undifferentiated cells (tau = 52 +/- 4 s; n = 25). After differentiation for 12-16 days, the [Ca(2+)](i) recovery rate increased by more than threefold (tau = 17 +/- 1 s; n = 31). Western blots showed a pronounced increase in expression of three major PMCA isoforms in IMR-32 cells during differentiation, including PMCA2, PMCA3 and PMCA4. These results demonstrate up-regulation of PMCAs on the functional and protein level during neuronal differentiation in vitro. Parallel amplification of Ca(2+) influx and efflux pathways may enable differentiated neurons to precisely localize Ca(2+) signals in time and space.  相似文献   

7.
The relationship between mitochondrial Ca2 transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2 transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mClCR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mClCR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mClCR and PTP opening. mClCR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2 transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

8.
9.
The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca2+ signalling by either amplifying Ca2+ entry through voltage-gated Ca2+ channels by Ca2+-induced Ca2+ release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol-1,4,5-trisphosphate-induced Ca2+ release (IICR). The ER Ca2+ store emerges as a single interconnected pool, thus allowing for a long-range Ca2+ signalling via intra-ER tunnels. The fluctuations of intra-ER free Ca2+ concentration regulate the activity of numerous ER resident proteins responsible for post-translational protein folding and modification. Disruption of ER Ca2+ homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca2+ handling may be involved in pathogenesis of various, neurodegenerative diseases including brain ischemia and Alzheimer dementia.  相似文献   

10.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

11.
We recently reported the first molecular genetic evidence that Dictyostelium Ca2+ responses to chemoattractants include a contribution from the endoplasmic reticulum (ER) – responses are enhanced in mutants lacking calreticulin or calnexin, two major Ca2+-binding proteins in the ER, even though the influx of Ca2+ into the mutants is reduced. Compared with wild-type cells, the ER in the mutants contributes at least 30–70 nM additional Ca2+ to the responses. Here we report that this additional ER contribution to the cytosolic Ca2+ signal depends upon extracellular Ca2+– it does not occur in the absence of extracellular Ca2+, increases to a maximum as the extracellular Ca2+ levels rise to 10 μM and then remains constant at extracellular Ca2+ concentrations up to at least 250 μM. These results suggest that Ca2+ influx causes the intracellular release, in the simplest scenario by a mechanism involving Ca2+-induced Ca2+ release from the ER. By way of contrast, we show that Ca2+ responses to mechanical stimulation are reduced, but still occur in the absence of extracellular Ca2+. Unlike the responses to chemoattractants, mechanoresponses thus include contributions from the ER that are independent of extracellular Ca2+.  相似文献   

12.
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175–4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.  相似文献   

13.
The effects of PK11195, a high-affinity peripheral benzodiazepine receptor (PBR) ligand, on protein phosphorylation in isolated purified rat brain mitochondria were investigated. The isoquinoline carboxamide ligand of PBR, PK11195, but not the benzodiazepine ligand Ro5-4864, in the nanomolar concentration range strongly increased the phosphorylation of 3.5 and 17 kDa polypeptides. The effect of PK11195 was seen in the presence of elevated Ca(2+) levels (3 x 10(-7) to 10(-6) m), but not at very low Ca(2+) levels (10(-8) to 3 x 10(-8) m). This indicates that PBR involves Ca(2+) as a second messenger in the regulation of protein phosphorylation. Staurosporine, an inhibitor of protein kinase activity was able to suppress the PK11195-promoted protein phosphorylation. When the permeability transition pore (PTP) was opened by threshold Ca(2+) load, phosphorylation of the 3.5-kDa polypeptide was diminished, but strong phosphorylation of the 43-kDa protein was revealed. The 43-kDa protein appears to be a PTP-specific phosphoprotein. If PTP was opened, PK11195 did not increase the phosphorylation of the 3.5 and 17-kDa proteins but suppressed the phosphorylation of the PTP-specific 43-kDa phosphoprotein. The ability of PK11195 to increase the protein phosphorylation, which was lost under Ca(2+)-induced PTP opening, was restored again in the presence of calmidazolium, an antagonist of calmodulin and inhibitor of protein phosphatase PP2B. These results show a tight interaction of PBR with the PTP complex in rat brain mitochondria. In conclusion, a novel function of PBR in brain mitochondria has been revealed, and the PBR-mediated protein phosphorylation has to be considered an important element of the PBR-associated signal transducing cascades in mitochondria and cells.  相似文献   

14.
Mitochondria sense,shape and integrate signals,and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance,the molecular nature of the proteins involvedin mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and downstream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio,but at the same time will increase reactive oxygen species(ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state,which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redoxsensitive sensors,real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review,we describe mitochondrial Ca2+ handling,focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings,revealing how mitochondrial Ca2+ influences the matrix redox state. As a result,mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.  相似文献   

15.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

16.
Ca2+ regulates many steps in cell death mechanisms, and is potentially involved in all types of cell death. Moreover, virtually all elements of the cellular Ca2+ toolbox seem to contribute to remodeling of the Ca2+ signaling machinery during cell death processes. As expected from the ubiquitous nature of Ca2+ signaling, these mechanisms are operative in all cell types, and their malfunction may lead to a wide diversity of pathological implications. The contributions in this Special Issue deal with many different aspects of the relation between Ca2+ signaling and cell death. They illustrate the complexity of this relation, and importantly they give an outlook on potential new therapeutic targets for treatment of diseases connected to defects in cell death pathways.  相似文献   

17.
In this study, we showed that cross-linking CD3 molecules on the T cell surface resulted in Ca2+ release from the intracellular stores followed by a sustained Ca2+ influx. Inhibition of release with TMB-8 did not block the influx. However, inhibition of phospholipase C activity suppressed both Ca2+ release and influx. Once activated, the influx pathway remained open in the absence of further hydrolysis of PIP2. Thapsigargin, a microsomal Ca2+ -ATPase inhibitor, stimulated Ca2+ entry into the cells by a mechanism other than emptying Ca2+ stores. In addition, Ca2+ entry into the Ca2+ -depleted cells was stimulated by low basal level of cytosolic Ca2+, not by the emptying of intracellular Ca2+ stores. Both the Ca2+ release and influx were dependent on high and low concentrations of extracellular Ca2+. At low concentrations, Mn2+ entered the cell through the Ca2+ influx pathway and quenched the sustained phase of fluorescence; whereas, at higher Mn2+ concentration both the transient and the sustained phases of fluorescence were quenched. Moreover, Ca2+ release was inhibited by low concentrations of Ni2+, La3+, and EGTA, while Ca2+ influx was inhibited by high concentrations. Thus, in T cells Ca2+ influx occurs independently of IP3-dependent Ca2+ release. However, some other PIP2 hydrolysis-dependent event was involved in prolonged activation of Ca2+ influx. Extracellular Ca2+ influenced Ca2+ release and influx through the action of two plasma membrane Ca2+ entry pathways with different pharmacological and biochemical properties.  相似文献   

18.
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which arelocated both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions.  相似文献   

19.
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.  相似文献   

20.
研究Zn2+对Ca2+介导线粒体通透过渡孔道(PTP)开放和线粒体细胞色素c释放的影响,及其与线粒体膜电位(ΔΨm)和Ca2+介导的线粒体Ca2+释放(mCICR)之间的关系.提取大鼠肝线粒体,通过紫外分光光度仪检测不同浓度Zn2+作用下Ca2+介导的PTP开放状态;采用荧光分光光度仪测定不同浓度Zn2+作用下线粒体膜电位的变化;采用双波长双光束紫外分光光度仪检测不同浓度Zn2+作用下测试体系内Ca2+浓度的变化,以反映线粒体Ca2+的转运情况(即mCICR);通过免疫印迹法检测不同浓度Zn2+作用下Ca2+介导的线粒体细胞色素c的释放.高浓度Zn2+完全抑制Ca2+介导的PTP开放和细胞色素c释放.一定浓度的Zn2+部分抑制Ca2+介导的PTP开放和细胞色素c释放.适当浓度Zn2+自身介导PTP开放和细胞色素c释放.低浓度Zn2+加速Ca2+介导PTP开放和Ca2+释放;高浓度和一定浓度Zn2+分别完全或部分破坏ΔΨm;高浓度Zn2+完全抑制mCICR.当抑制mCICR时,Ca2+和Zn2+对PTP开放和细胞色素c释放的作用完全抑制.结果表明,Zn2+以浓度依赖方式双向调节PTP开放和细胞色素c释放.Zn2+的作用可能与Zn2+破坏ΔΨm和影响mCICR相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号