首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Aerial architecture in higher plants is dependent on the activity of the shoot apical meristem (SAM) and axillary meristems (AMs). The SAM produces a main shoot and leaf primordia, while AMs are generated at the axils of leaf primordia and give rise to branches and flowers. Therefore, the formation of AMs is a critical step in the construction of plant architecture. Here, we characterized the rice (Oryza sativa) lax panicle2 (lax2) mutant, which has altered AM formation. LAX2 regulates the branching of the aboveground parts of a rice plant throughout plant development, except for the primary branch in the panicle. The lax2 mutant is similar to lax panicle1 (lax1) in that it lacks an AM in most of the lateral branching of the panicle and has a reduced number of AMs at the vegetative stage. The lax1 lax2 double mutant synergistically enhances the reduced-branching phenotype, indicating the presence of multiple pathways for branching. LAX2 encodes a nuclear protein that contains a plant-specific conserved domain and physically interacts with LAX1. We propose that LAX2 is a novel factor that acts together with LAX1 in rice to regulate the process of AM formation.  相似文献   

3.
The enormous variation in architecture of flowering plants is based to a large extent on their ability to form new axes of growth throughout their life span. Secondary growth is initiated from groups of pluripotent cells, called meristems, which are established in the axils of leaves. Such meristems form lateral organs and develop into a side shoot or a flower, depending on the developmental status of the plant and environmental conditions. The phytohormone auxin is well known to play an important role in inhibiting the outgrowth of axillary buds, a phenomenon known as apical dominance. However, the role of auxin in the process of axillary meristem formation is largely unknown. In this study, we show in the model species Arabidopsis thaliana and tomato (Solanum lycopersicum) that auxin is depleted from leaf axils during vegetative development. Disruption of polar auxin transport compromises auxin depletion from the leaf axil and axillary meristem initiation. Ectopic auxin biosynthesis in leaf axils interferes with axillary meristem formation, whereas repression of auxin signaling in polar auxin transport mutants can largely rescue their branching defects. These results strongly suggest that depletion of auxin from leaf axils is a prerequisite for axillary meristem formation during vegetative development.  相似文献   

4.
Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems.  相似文献   

5.
6.
The relationship between several growth components of a shootand the fates of the axillary meristems (developing in the axilsof the leaves) borne by that shoot were studied, on first-ordershoots of young peach trees. A comprehensive picture of thoserelationships was obtained by a discriminant analysis. Shootgrowth at meristem emergence date was characterized by internodelength, leaf-production rate and leaf-unfolding duration. Allpossible fates of axillary meristems at the end of the growingseason (i.e. blind nodes, single vegetative or flower bud, budassociations, sylleptic or proleptic shoots) were considered.Shoot-elongation rate determined meristem fates quantitatively.The number of buds produced by a meristem increased when theshoot-elongation rate increased. Qualitatively, the fate of axillary meristems was related tothe balance between shoot-growth components. If the subtendingleaf unfolded slowly, sylleptic or proleptic shoots were morelikely to develop than bud associations, for high shoot-elongationrates; and flower buds were more frequent than vegetative buds,for low shoot-elongation rates. Compared to flower buds, blindnodes appeared for similar shoot-elongation rates but longerinternodes and lower leaf-production rates. The emergence dateslightly modified the relation between shoot growth and axillary-meristemfates, but the main features held true throughout the growingseason. The relationships between shoot growth and meristem fates mayresult from competitive interactions between the growing subtendingleaf and the developing axillary meristem. Growing conditionsmight also influence both shoot growth and meristem fates byfavouring either cell enlargement or cell division.Copyright1995, 1999 Academic Press Peach tree, Prunus persica (L.) Batsch, axillary meristem, meristem fate, branching, flowering, shoot growth, discriminant analysis, exploratory analysis  相似文献   

7.
8.
The Relationship between auxin transport and maize branching   总被引:8,自引:2,他引:6  
Maize (Zea mays) plants make different types of vegetative or reproductive branches during development. Branches develop from axillary meristems produced on the flanks of the vegetative or inflorescence shoot apical meristem. Among these branches are the spikelets, short grass-specific structures, produced by determinate axillary spikelet-pair and spikelet meristems. We investigated the mechanism of branching in maize by making transgenic plants expressing a native expressed endogenous auxin efflux transporter (ZmPIN1a) fused to yellow fluorescent protein and a synthetic auxin-responsive promoter (DR5rev) driving red fluorescent protein. By imaging these plants, we found that all maize branching events during vegetative and reproductive development appear to be regulated by the creation of auxin response maxima through the activity of polar auxin transporters. We also found that the auxin transporter ZmPIN1a is functional, as it can rescue the polar auxin transport defects of the Arabidopsis (Arabidopsis thaliana) pin1-3 mutant. Based on this and on the groundbreaking analysis in Arabidopsis and other species, we conclude that branching mechanisms are conserved and can, in addition, explain the formation of axillary meristems (spikelet-pair and spikelet meristems) that are unique to grasses. We also found that BARREN STALK1 is required for the creation of auxin response maxima at the flanks of the inflorescence meristem, suggesting a role in the initiation of polar auxin transport for axillary meristem formation. Based on our results, we propose a general model for branching during maize inflorescence development.  相似文献   

9.
10.
We have analyzed two mutants that exhibit altered panicle architecture in rice (Oryza sativa L.). In lax1-2, which is a new and stronger allele of the previously reported lax mutant, initiation and/or maintenance of rachis-branches, lateral spikelets, and terminal spikelets was severely prevented. In situ hybridization analysis using OSH1, a rice knotted1 (kn1) ortholog, confirmed the absence of lateral meristems in lax1-2 panicles. These defects indicate that the LAX1 gene is required for the initiation/maintenance of axillary meristems in the rice panicle. In addition to its role in forming lateral meristems, the wild-type LAX1 gene acts as a floral meristem identity gene which specifies the terminal spikelet meristem. A comparison of the defects in lax1-1 and lax1-2 plants suggested that the sensitivities to reduced LAX1 activity were not uniform among different types of meristems. In the fzp2 mutant panicle, the basic branching pattern of the panicle was indistinguishable from that of the wild type; however, specification of both terminal and lateral spikelet meristems was blocked, and sequential rounds of branching occurred at the point where the spikelet meristems are initiated in the wild-type panicle. This resulted in the generation of a panicle composed of excessive ramification of rachis-branches. The lax1-1 fzp2 double mutants exhibited a novel, basically additive, phenotype, which suggests that LAX1 and FZP2 function in genetically independent pathways.  相似文献   

11.
12.
Axillary meristem growth and development help define plant architecture in barley (Hordeum vulgare L). Plants carrying the recessive uniculm2 (cul2) mutation initiate vegetative axillary meristem development but fail to develop tillers. In addition, inflorescence axillary meristems develop into spikelets, but the spikelets at the distal end of the inflorescence have an altered phyllotaxy and are sometimes absent. Double mutant combinations of cul2 and nine other recessive mutations that exhibit low to high tiller number phenotypes resulted in a uniculm vegetative phenotype. One exception was the occasional multiple shoots produced in combination with granum-a; a high tillering mutant that occasionally produces two shoot apical meristems. These results show that the CUL2 gene product plays a role in the development of axillary meristems into tillers but does not regulate the development of vegetative apical meristems. Moreover, novel double-mutant inflorescence phenotypes were observed with cul2 in combination with the other mutants. These data show that the wild-type CUL2 gene product is involved in controlling proper inflorescence development and that it functions in combination with some of the other genes that affect branching. Our genetic analysis indicates that there are genetically separate but not distinct regulatory controls on vegetative and inflorescence axillary development. Finally, to facilitate future positionally cloning of cul2, we positioned cul2 on chromosome 6(6H) of the barley RFLP map.  相似文献   

13.
14.
To elucidate the significance of the simultaneous growth of vegetative and reproductive organs in the prostrate annual Chamaesyce maculata (L.) Small (Euphorbiaceae) from the standpoint of meristem allocation, we investigated plant architecture, meristem allocation, and the spatial and temporal patterns in vegetative growth and reproduction in the reproductive stage. The numbers of secondary and tertiary shoots successively increased by branching in the reproductive stage, and the sum of shoot length was greater in secondary shoots than in primary shoots. The specific shoot length (shoot length per shoot biomass) was greater in lateral shoots than in primary shoots, indicating efficient lateral shoot elongation. The internode length was shorter in secondary shoots than in primary shoots, increasing the number of nodes per shoot length in secondary shoots. Many nodes on a shoot generated two meristems, one of which committed to a flower and one to a lateral shoot. The number of reproductive meristems was greatest in tertiary shoots, and 96% of total reproductive meristems on shoots were generated in lateral shoots. On almost all nodes, the reproductive meristem developed into a flower, and 95–98% of the flowers produced a fruit. Therefore, vegetative growth by branching in the reproductive stage contributed to the increase in reproductive outputs. From the standpoint of meristem allocation, the simultaneous growth of vegetative and reproductive organs in prostrate plant species might be important for increasing the number of growth and reproductive meristems, resulting in the increase in reproductive outputs.  相似文献   

15.
Axillary meristem development in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Axillary shoot apical meristems initiate post-embryonically in the axils of leaves. Their developmental fate is a main determinant of the final plant body plan. In Arabidopsis, usually a single axillary meristem initiates in the leaf axil even though there is developmental potential for formation of multiple branches. While the wild-type plants rarely form multiple branches in the leaf axil, tfl1-2 plants regularly develop two or more branches in the axils of the rosette leaves. Axillary meristem formation in Arabidopsis occurs in two waves: an acropetal wave forms during plant vegetative development, and a basipetal wave forms during plant reproductive development. We report here the morphological and anatomical changes, and the STM expression pattern associated with the formation of axillary and accessory meristems during Arabidopsis vegetative development.  相似文献   

16.
Axillary meristems, which give rise to branches and flowers, play a critical role in plant architecture and reproduction. To understand how axillary meristems initiate, we have screened for mutants with defects in axillary meristem initiation to uncover the genes controlling this process. These mutants, called the barren class of mutants in maize (Zea mays), have defects in axillary meristem initiation during both vegetative and reproductive development. Here, we identify and characterize a new member of the barren class of mutants named Developmental disaster1 (Dvd1), due to the pleiotropic effects of the mutation. Similar to the barren mutants, Dvd1 mutants have fewer branches, spikelets, florets, and floral organs in the inflorescence due to defects in the initiation of axillary meristems. Furthermore, double mutant analysis with teosinte branched1 shows that dvd1 also functions in axillary meristems during vegetative development. However, unlike the barren mutants, Dvd1 mutants are semidwarf due to the production of shorter internodes, and they produce leaves in the inflorescence due to the outgrowth of bract leaf primordia. The suite of defects seen in Dvd1 mutants, together with the genetic interaction of Dvd1 with barren inflorescence2, suggests that dvd1 is a novel regulator of axillary meristem and internode development.  相似文献   

17.
MAX1 and MAX2 control shoot lateral branching in Arabidopsis   总被引:22,自引:0,他引:22  
Plant shoots elaborate their adult form by selective control over the growth of both their primary shoot apical meristem and their axillary shoot meristems. We describe recessive mutations at two loci in Arabidopsis, MAX1 and MAX2, that affect the selective repression of axillary shoots. All the first order (but not higher order) axillary shoots initiated by mutant plants remain active, resulting in bushier shoots than those of wild type. In vegetative plants where axillary shoots develop in a basal to apical sequence, the mutations do not clearly alter node distance, from the shoot apex, at which axillary shoot meristems initiate but shorten the distance at which the first axillary leaf primordium is produced by the axillary shoot meristem. A small number of mutant axillary shoot meristems is enlarged and, later in development, a low proportion of mutant lateral shoots is fasciated. Together, this suggests that MAX1 and MAX2 do not control the timing of axillary meristem initiation but repress primordia formation by the axillary meristem. In addition to shoot branching, mutations at both loci affect leaf shape. The mutations at MAX2 cause increased hypocotyl and petiole elongation in light-grown seedlings. Positional cloning identifies MAX2 as a member of the F-box leucine-rich repeat family of proteins. MAX2 is identical to ORE9, a proposed regulator of leaf senescence ( Woo, H. R., Chung, K. M., Park, J.-H., Oh, S. A., Ahn, T., Hong, S. H., Jang, S. K. and Nam, H. G. (2001) Plant Cell 13, 1779-1790). Our results suggest that selective repression of axillary shoots involves ubiquitin-mediated degradation of as yet unidentified proteins that activate axillary growth.  相似文献   

18.
19.
20.
I Amaya  O J Ratcliffe    D J Bradley 《The Plant cell》1999,11(8):1405-1418
Plant species exhibit two primary forms of flowering architecture, namely, indeterminate and determinate. Antirrhinum is an indeterminate species in which shoots grow indefinitely and only generate flowers from their periphery. Tobacco is a determinate species in which shoot meristems terminate by converting to a flower. We show that tobacco is responsive to the CENTRORADIALIS (CEN) gene, which is required for indeterminate growth of the shoot meristem in Antirrhinum. Tobacco plants overexpressing CEN have an extended vegetative phase, delaying the switch to flowering. Therefore, CEN defines a conserved system controlling shoot meristem identity and plant architecture in diverse species. To understand the underlying basis for differences between determinate and indeterminate architectures, we isolated CEN-like genes from tobacco (CET genes). In tobacco, the CET genes most similar to CEN are not expressed in the main shoot meristem; their expression is restricted to vegetative axillary meristems. As vegetative meristems develop into flowering shoots, CET genes are downregulated as floral meristem identity genes are upregulated. Our results suggest a general model for tobacco, Antirrhinum, and Arabidopsis, whereby the complementary expression patterns of CEN-like genes and floral meristem identity genes underlie different plant architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号