首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thirty-nine silage samples were collected from various siloson Terceira Island in the Azores. Samples were examined for the presence of total fungi, and isolates of Aspergillus fumigatus were analyzed for their ability to produce fumitremorgens B and C, fumigaclavines B and C, and gliotoxin. Thirty-four silage samples (87%) were contaminated with fungi, and A. fumigatus was isolated from 27 samples (69%). Samples that were taken from the surface of silos had significantly higher populations of both total fungi and A. fumigatus than did samples taken from the middle of silos. Analysis of 27 A. fumigatus isolates (one representing each positive sample) showed that 59.3% produced fumitremorgen B; 33.3% produced fumitremorgen C; 29.6% produced fumigaclavine B; 7.4% produced fumigaclavine C; and 11.1% produced gliotoxin. Fifty-two percent of the isolates produced multiple toxins, and 25.9% did not produce any of these toxins. Gliotoxin and fumigaclavine C were always produced in combination with other toxins. Because of the demonstrated potential of these A. fumigatus isolates to producemycotoxins, it is important to properly construct and manage silos to prevent their contamination with A. fumigatus.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Thirteen samples of infected turkey lung tissue from cases of airsacculitis were collected either at the processing plant or from a local turkey farm and subjected to cultural and gliotoxin analysis. Aspergillus fumigatus was isolated from 6 of the 13 samples; all isolates were determined to be gliotoxin producers when grown in laboratory culture and assayed by HPLC procedures. Gliotoxin was isolated from 5 of the 13 tissues but was not isolated from all tissues that were infected with A. fumigatus. Gliotoxin was isolated from two tissues from which no A. fumigatus was isolated and it was not detected in three tissues from which gliotoxin-producing isolates of A. fumigatus were obtained. The ability of this pathogenic fungus to produce this immunomodulating compound in naturally infected turkeys provides further evidence that gliotoxin may be involved in the pathogenesis of the disease, aspergillosis of turkeys. Disclaimer: Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the products, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

4.
The genotoxic effects of gliotoxin, a known fungal secondary metabolite, were studied. Gliotoxin was purified from cultivation medium of Aspergillus fumigatus isolated from the indoor air of a moisture problem house. The genotoxicity of gliotoxin was assessed both in bacterial test systems including bacterial repair assay, Ames Salmonella assay and SOS-chromotest, and in mammalian cells using single cell gel (SCG) electrophoresis assay and sister-chromatid exchange (SCE) test. Gliotoxin was found to be genotoxic in the bacterial repair assay but, not in the Salmonella test or SOS-chromotest. A dose-related increase in DNA damage was observed in mouse RAW264.7 macrophages exposed to gliotoxin for 2 h in plain medium in the SCG assay. In contrast to the positive response in the SCG assay, gliotoxin did not induce any clear, dose-related increase in SCEs in Chinese hamster ovary (CHO) cells.  相似文献   

5.
Gliotoxin, a mycotoxin with antimicrobial and immunosuppressive capabilities, is produced by several genera of fungi including the pathogenic fungusAspergillus fumigatus. The ability of selected isolates ofA. fumigatus to produce gliotoxin on three different media was tested and a thin layer chromatographic and high performance liquid chromatographic method for quantitation of gliotoxin from rice culture was developed and is described. Rice cultures were extracted with chloroform and the resulting extract was partially purified by precipitation with petroleum ether and cleanup by gel permeation chromatography. Gliotoxin was detected by thin layer chromatography and quantitated by high performance liquid chromatography using a U.V. absorbance detector with a 254 nm filter and a mobile phase of methanol-water 4357 (V/V) with a flow rate of 2.0 ml/min. The retention time for gliotoxin was approximately 4.8 min. From rice samples spiked with gliotoxin concentrations of 0.67, 1.33, 2.67, 4.00 and 5.33g/g the average recovery was 83.8%.  相似文献   

6.
Turkey poults were given either of two different dosages of two different gliotoxin-producing strains ofAspergillus fumigatus. Infected lung tissue was examined postmortem for the presence of gliotoxin. Gliotoxin was found in lung tissue of ten poults infected with one strain and in seven of ten poults infected with the other strain. Concentrations of gliotoxin in the tissue exceeded 6 ppm in some of the infected tissues. The concentration of gliotoxin found in infected tissue did not appear to be correlated with the dosage of organism given. Considering the pathologic changes observed in turkey poults with aspergillosis and the production of gliotoxin during the pathogenic state in turkey poults, gliotoxin is considered likely to be involved in avian aspergillosis. Disclaimer: Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

7.
The potential association between hygienic conditions in the environment of lactating cows and the presence of gliotoxinogenic Aspergillus fumigatus strains was studied. Milk samples (individual cow’s milk [ICM], bulk tank milk [BTM]) from 44 dairy farms were sampled. In ICM samples, eight different species of Aspergillus were identified. A. flavus and A. fumigatus were predominant, with 37.8 % and 26.1 % relative densities, respectively. A. fumigatus strains were isolated from 61.4 % of the BTM samples, and 34 % of these strains were able to produce gliotoxin. Principal component analysis was used to associate the presence of A. fumigatus with some hygienic and sanitary practices. A significant and positive correlation was observed between dry cow therapy and forestripping. The presence of A. fumigatus gliotoxin producers in milk was associated with high somatic cells count (SCC) samples. Good hygienic and sanitary practices were associated with absence of A. fumigatus and relatively low SCCs of <250,000 cells/ml. In general, a high percentage of dairy farms were positive for A. fumigatus in BTM samples. This is the first work that indicates the positive effects of adequate hygienic and sanitary practices in dairy herds on the control of A. fumigatus and related species. By reducing the frequency of Aspergillus spp. in the dairy environment, the risk of farm handlers’ exposure and the risk of intramammary fungal infections would also be reduced.  相似文献   

8.
In the course of screening for anti-platelet principles produced by micro-organisms, strong anti-platelet activity was detected in the culture broth of Aspergillus fumigatus Fres. The purified active compound was identified as gliotoxin. Gliotoxin inhibited ADP-induced aggregation as well as collagen- or arachidonate-induced aggregation of rabbit platelets (IC50 = about 27 μm) and also accelerated the dissociation of aggregates. Gliotoxin also inhibited the heat hemolysis of rabbit erythrocytes, suggesting that this agent is a membrane-stabilizing anti-aggregant. The disulfide structure in the gliotoxin molecule was responsible for the inhibitory activity, because des- thiogliotoxin had effects on neither platelet aggregation nor heat hemolysis of erythrocytes.  相似文献   

9.
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.  相似文献   

10.
Aims:  To evaluate gliotoxin production by Aspergillus fumigatus strains isolated from feedstuff intended for domestic animals and pets, and to determine the amount of gliotoxin in these substrates.
Methods and Results:  A total of 150 feedstuff samples were collected. They were composed of 30 samples each of five different feed types (pigs, poultry, cattle, horse and pets). Aspergillus fumigatus gliotoxin production ability and gliotoxin presence in feedstuff was determined by HPLC. Aspergillus fumigatus strains were isolated from all of the tested samples. Strains from cattle, horses and pet food were able to produce gliotoxin. Corn silage samples intended for cattle did not show gliotoxin contamination. All the other tested samples had gliotoxin levels ranging from 29 to 209 μg g−1. Horse and poultry feed samples had the greatest contamination frequency.
Conclusions:  Feed samples contaminated with gliotoxin are potentially toxic to animals.
Significance and Impact of the Study:  The presence of gliotoxin could affect animal productivity and health. Moreover, there are risks of contamination to farm workers handling improperly stored animal feed. Aspergillus fumigatus strains isolated from different sources should be investigated to determine prevention and control strategies.  相似文献   

11.
12.
Gliotoxin, one of the mycotoxins produced by Aspergillus fumigatus, has various, potent bioactivities. However, it has not been considered to be a toxic (or virulence) factor because of its slow production. The aim of the present study was to investigate the effects of aeration on the cytotoxicity of A. fumigatus culture filtrate, and to determine the optimal condition for the rapid production of gliotoxin from this fungus. Fungal culture filtrates were made in three different containers under various conditions of aeration and O2 concentration. These filtrates were compared in terms of their cytotoxicity on murine macrophages and analyzed by gas chromatography. The culture filtrate showed high cytotoxicity when it was made under highly aerated conditions, but it was significantly less cytotoxic when prepared under non-aerated conditions. The cytotoxic activity became evident within 15 h of culture at 20% O2, when the fungus had already started producing gliotoxin. The culture filtrates also contained some other as yet unidentified substances that might also to some extent contribute to the cytotoxicity. In light of these results, the authors propose that a highly aerated condition is responsible for the rapid production of gliotoxin, and that gliotoxin might play an important role in the respiratory infection by A. fumigatus, with other toxic substances acting additively or synergistically.  相似文献   

13.
One hundred and six strains ofA. fumigatus were isolated from 21 sawmills in Sweden, and 73 of these strains were examined for production of fumitremorgen B and verruculogen (tremorgenic mycotoxins) on YES-medium using thin layer chromatography (TLC). Twenty-three strains (32%) were tremorgen producers and 50 strains (68%) were non-producers. Tremorgenic mycotoxins were detected in conidia of sevenA. fumigatus strains. The amount of toxin varied between 0.6–8.0 µg/108 conidia (mean value 2.3 µg/108 conidia, equivalent with 0.18%). No production of the mycotoxin gliotoxin was detected in 6 strains ofA. fumigatus. No tremorgens were detected during mould growth on wood substrates, in spite of the use of different wood species (Scots pine,Pinus sylvestris; Norway spruce,Picea abies and birch,Betula spp.), dried versus non-dried wood, bark (pine), leached wood, and wood after various sterilization methods.  相似文献   

14.
Forty silage samples were collected from Assiut and Sohag governorates in Egypt to measure the presence of fungal population in silage. Forty-three species and 2 species varieties belonging to 17 genera were isolated using glucose Czapeks and Sabourauds dextrose agar media at 28 °C. The most prevalent genera were Aspergillus (57.5 and 100 of the samples), Penicillium (100 and 55%) on the two mentioned media, respectively. Also, Fusarium oxysporum and Gibberella fujikurori were recovered in moderate incidences. Mycotoxin profiles were also determined in these samples: Aflatoxins showed the highest incidence rates of occurrence, it occurred in 22.5% of all samples analyzed. Other mycotoxins were detected from all samples (T2 toxins and sterigmatocystin at incidence of 7.5 and 5%, respectively). The screening of the characteristics mycotoxins of different isolates of Aspergillus isolated from silage samples was tested. The results clarified that some mycotoxins (aflatoxins – aspergillic acid – beta nitro propionic acid – cyclopiazonic acid– kojic acid and sterigmatocystin) were produced by some isolates of A. flavus. Some isolates of A.fumigatus could produce gliotoxin and verrucologen. All of A. niger isolates tested were able to produce kojic acid. One isolate of A. ochraceous formed ochratoxin A and other isolate produced penicillic acid. Concerning A. terreus isolates, the results showed that 5 isolates were able to produce citrinin and 4 isolates had ability to produce patulin. A. versicolor isolates showed the ability to produce ochratoxin A.  相似文献   

15.
Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus. The gliotoxin bis-thiomethyltransferase, GtmA, attenuates gliotoxin biosynthesis in A. fumigatus by conversion of dithiol gliotoxin to bis-thiomethylgliotoxin (BmGT). Here we show that disruption of dithiol gliotoxin bis-thiomethylation functionality in A. fumigatus results in significant remodelling of the A. fumigatus secondary metabolome upon extended culture. RP-HPLC and LC–MS/MS analysis revealed the reduced production of a plethora of unrelated biosynthetic gene cluster-encoded metabolites, including pseurotin A, fumagillin, fumitremorgin C and tryprostatin B, occurs in A. fumigatus ΔgtmA upon extended incubation. Parallel quantitative proteomic analysis of A. fumigatus wild-type and ΔgtmA during extended culture revealed cognate abundance alteration of proteins encoded by relevant biosynthetic gene clusters, allied to multiple alterations in hypoxia-related proteins. The data presented herein reveal a previously concealed functionality of GtmA in facilitating the biosynthesis of other BGC-encoded metabolites produced by A. fumigatus.  相似文献   

16.
Aspergillus fumigatus is the most common causative agent of mold diseases in humans, giving rise to life-threatening infections in immunocompromised individuals. One of its secreted metabolites is gliotoxin, a toxic antimicrobial agent. The aim of this study was to determine whether the presence of pathogen-associated molecular patterns in broth cultures of A. fumigatus could induce gliotoxin production. Gliotoxin levels were analyzed by ultra-performance liquid chromatography and mass spectrometry. The presence of a bacteria-derived lipopolysaccharide, peptidoglycan, or lipoteichoic acid in the growth media at a concentration of 5 μg/ml increased the gliotoxin concentration in the media by 37%, 65%, and 35%, respectively. The findings reveal a correlation between the concentrations of pathogen-associated molecular patterns and gliotoxin secretion. This shows that there is a yet uncharacterized detection system for such compounds within fungi. Inducing secondary metabolite production by such means in fungi is potentially relevant for drug discovery research. Our results also give a possible explanation for the increased virulence of A. fumigatus during bacterial co-infection, one that is important for the transition from colonization to invasiveness in this pulmonary disease.  相似文献   

17.
Gliotoxin, an epipolythiodioxopiperizine mycotoxin, has been shown to be produced by, among other fungi,Aspergillus fumigatus Fresenius. This organism is the major causative agent of the respiratory disease aspergillosis in avian species, especially turkeys. Because gliotoxin has been shown to be immunosuppressive and has the potential for being involved in the pathogenesis of aspergillosis, the in vitro activity of this compound with avian lymphocytes was investigated. Immunosuppression was investigated using peripheral blood lymphocytes from turkeys in a lymphoblastogenesis assay and a cytotoxicity assay using conversion of the tetrazolium salt MTT to MTT formazan by the mitochondrial succinate dehydrogenase enzyme elaborated only by living cells. Gliotoxin appeared to have a threshold level in both tests because little or no response or stimulation was evident when cells were exposed to concentrations of the toxin below 100 ng/ml, but at 100 ng/ml, all cells appeared to be dead. Using T-2 mycotoxin as a known cytotoxic agent, the response in the MTT bioassay using turkey peripheral lymphocytes was linear with increasing concentrations of toxin. Gliotoxin may potentially cause immunosuppression in turkey poults through action on the lymphocytes or if this toxin were present in low concentrations stimulation could possibly occur.  相似文献   

18.
陈芳艳  张常建  韩黎 《微生物学报》2017,57(10):1443-1451
胶霉毒素(gliotoxin,GT)是一个分子量为326 Da的小分子化合物,其骨架是由非核糖体肽合成酶Gli P催化苯丙氨酸和丝氨酸缩合成的环二肽,属于表聚硫代哌嗪二酮类化合物,是一种重要的真菌次级代谢产物。体内外研究已经表明,GT对动植物产生多种效应,不仅具有免疫抑制功能和诱导细胞凋亡作用,在生物防治方面也具有潜在的应用价值。本文将对有关GT生物合成、诱导宿主效应机制及其潜在应用价值进行综述。  相似文献   

19.
Agricultural activities involve daily use of maize silage as feed for livestock, which can be contaminated by mycotoxigenic molds. To evaluate fungal contamination, and the production of mycotoxins in maize silage we propose a multi-disciplinary approach utilizing PCR methods with genes of the aflatoxin (ver-1, omt-1 and apa-2), fumonisin (FUM1) and trichothecene (TRI6) biosynthesis pathways. To detect Aspergillus fumigatus, a 26S/intergenic spacer region of the rDNA complex was amplified. These specific PCR assays allowed three major groups of toxigenic fungi-like aflatoxin-producing Aspergilli, fumonisin and trichothecene-producing Fusaria, and the ubiquitous mold A. fumigatus, to be targeted. A multimycotoxin method is also proposed to simultaneously quantify seven mycotoxins (i.e., aflatoxin B1, citrinin, deoxynivalenol, fumonisin B1, gliotoxin, ochratoxin A, zearalenone) in maize silage by high-performance liquid chromatography coupled to mass spectrometry (HPLC–MS). These microbiological and analytical tools revealed three potentially toxigenic groups of fungi and A. fumigatus grown from mature maize silage (11 month old) that was collected in Normandy (France) and the mycotoxins aflatoxin B1 (7.0–51.3 μg/kg), citrinin (10.1–14.2 μg/kg), deoxynivalenol (128.0–181.0 μg/kg) and gliotoxin (6.6–11.9 μg/kg). Results indicate that the combination of PCR and HPLC–MS can be used to assess fungal quality of maize silages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号