首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a novel β-1,3-1,4-glucanase gene (designated as PtLic16A) from Paecilomyces thermophila was cloned and sequenced. PtLic16A has an open reading frame of 945 bp, encoding 314 amino acids. The deduced amino acid sequence shares the highest identity (61%) with the putative endo-1,3(4)-β-glucanase from Neosartorya fischeri NRRL 181. PtLic16A was cloned into a vector pPIC9K and was expressed successfully in Pichia pastoris as active extracellular β-1,3-1,4-glucanase. The recombinant β-1,3-1,4-glucanase (PtLic16A) was secreted predominantly into the medium which comprised up to 85% of the total extracellular proteins and reached a protein concentration of 9.1 g l−1 with an activity of 55,300 U ml−1 in 5-l fermentor culture. The enzyme was then purified using two steps, ion exchange chromatography, and gel filtration chromatography. The purified enzyme had a molecular mass of 38.5 kDa on SDS–PAGE. It was optimally active at pH 7.0 and a temperature of 70°C. Furthermore, the enzyme exhibited strict specificity for β-1,3-1,4-d-glucans. This is the first report on the cloning and expression of a β-1,3-1,4-glucanase gene from Paecilomyces sp.  相似文献   

2.
Sun J  Wang H  Lv W  Ma C  Lou Z  Dai Y 《Biotechnology letters》2011,33(11):2193-2199
A new fusion gene (Bgl-licMB), encoding β-1,3-1,4-glucanase both from Bacillus amyloliquefaciens (Bgl) and Clostridium thermocellum (licMB), was constructed via end-to-end fusion and expressed in Escherichia coli to improve hydrolytic activity and thermostability of β-1,3-1,4-glucanase. The results of enzymatic properties showed that the catalytic efficiency (Kcat/Km) of the fusion enzyme for oat β-glucan was 2.7 and 20-fold higher than that of the parental Bgl and licMB, respectively, and that the fusion enzyme can retain more than 50% of activity following incubation at 80°C for 30 min, whereas the residual activities of Bgl and licMB were both less than 30%. These properties make this particular β-1,3-1,4-glucanase a good candidate for application in brewing and animal-feed industries.  相似文献   

3.
In this work, we identified a gene from Theobroma cacao L. genome and cDNA libraries, named TcGlu2, that encodes a β-1,3-1,4-glucanase. The TcGlu2 ORF was 720 bp in length and encoded a polypeptide of 239 amino acids with a molecular mass of 25.58 kDa. TcGlu2 contains a conserved domain characteristic of β-1,3-1,4-glucanases and presented high protein identity with β-1,3-1,4-glucanases from other plant species. Molecular modeling of TcGlu2 showed an active site of 13 amino acids typical of glucanase with β-1,3 and 1,4 action mode. The recombinant cDNA TcGlu2 obtained by heterologous expression in Escherichia coli and whose sequence was confirmed by mass spectrometry, has a molecular mass of about 22 kDa (with His-Tag) and showed antifungal activity against the fungus Moniliophthora perniciosa, causal agent of the witches’ broom disease in cacao. The integrity of the hyphae membranes of M. perniciosa, incubated with protein TcGlu2, was analyzed with propidium iodide. After 1 h of incubation, a strong fluorescence emitted by the hyphae indicating the hydrolysis of the membrane by TcGlu2, was observed. To our knowledge, this is the first study of a cacao β-1,3-1,4-glucanase expression in heterologous system and the first analysis showing the antifungal activity of a β-1,3-1,4-glucanase, in particular against M. perniciosa.  相似文献   

4.
Trichoderma species have become the important means of biological control for fungal diseases. This research was carried on to access the high β-1,3-glucanase and β-1,4-glucanase enzyme producer of Trichoderma species isolates using two different carbon sources for finding a method to obtain more concentrate culture filtrates. Therefore, 14 Trichoderma isolates belonging to species: Trichoderma ceramicum, T. virens, T. pseudokoningii, T. koningii, T. koningiosis, T. atroviridae, T. viridescens, T. asperellum, T. harzianum1, T. orientalis, T. harzianum2, T. brevicompactum, T. viride and T. spirale were cultured in Wiendling’s liquid medium plus 0.5% glycerol or 0.5% Phytophthora sojae-hyphe as the carbon source in shaking and non-shaking (stagnant) statuses. Enzyme activity rate and total protein were evaluated in raw, acetony and lyophilized concentrated culture filtrates and the specific enzyme activity of β-1,3-glucanase and β-1,4-glucanase were measured by milligramme glucose equivalent released per minute per milligramme total protein in culture filtrates. The results showed that using Phytophthora – hyphe in medium increased the enzyme activities as compared to glycerol at all Trichoderma species which suggested that these substrates can also act as inducer for synthesis of lytic enzymes, in addition the most enzymes activity was observed in the lyophilised concentrated culture filtrate. The most successful species in β-1,3-glucanase and β-1,4-glucanase enzymes activities were T. brevicompactum and T. virens and these species can be used for mass production of these enzymes which are supposed to be used in commercial formulation and also will be able to control P. sojae directly.  相似文献   

5.
Molecular-sieve chromatography of an extract from ungerminated rye indicated the presence of enzymes which hydrolysed cellobiose, laminaribiose and the β-glucans cellodextrin, laminarin and barley β-glucan. A purified endo-β-1,3-glucanase was prepared from the extract by ammonium sulphate fractionation and molecular-sieve chromatography on Biogel P60. The substrate specificity and some properties of the enzyme are reported and the in vivo role of the enzyme is discussed.  相似文献   

6.
7.
β-Glucanases have been utilized widely in industry to treat various carbohydrate-containing materials. Recently, the Podospora anserina β-glucanase 131A (PaGluc131A) was identified and classified to a new glycoside hydrolases GH131 family. It shows exo-β-1,3/exo-β-1,6 and endo-β-1,4 glucanase activities with a broad substrate specificity for laminarin, curdlan, pachyman, lichenan, pustulan, and cellulosic derivatives. Here we report the crystal structures of the PaGluc131A catalytic domain with or without ligand (cellotriose) at 1.8 Å resolution. The cellotriose was clearly observed to occupy the +1 to +3 subsites in substrate binding cleft. The broadened substrate binding groove may explain the diverse substrate specificity. Based on our crystal structures, the GH131 family enzyme is likely to carry out the hydrolysis through an inverting catalytic mechanism, in which E99 and E139 are supposed to serve as the general base and general acid.  相似文献   

8.
Four types of β-1,3-1,4 glucanase (β-glucanase, EC 3.2.1.73) genes, designated bglA13, bglA16, bglA51, and bglM2, were found in the cDNA library of Neocallimastix patriciarum J11. All were highly homologous with each other and demonstrated a close phylogenetic relationship with and a similar codon bias to Streptococcus equinus. The presence of expansion and several predicted secondary structures in the 3' untranslated regions (3'UTRs) of bglA16 and bglM2 suggest that these two genes were duplicated recently, whereas bglA13 and bglA16, which contain very short 3'UTRs, were replicated earlier. These findings indicate that the β-glucanase genes from N. patriciarum J11 may have arisen by horizontal transfer from the bacterium and subsequent duplication in the rumen fungus. β-Glucanase genes of Streptococcus equinus, Ruminococcus albus 7, and N. patriciarum J11 were cloned and expressed by Escherichia coli. The recombinant β-glucanases cloned from S. equinus, R. albus 7, and N. patriciarum J11 were endo-acting and had similar substrate specificity, but they demonstrated different properties in other tests. The specific activities and catalytic efficiency of the bacterial β-glucanases were also significantly lower than those of the fungal β-glucanases. Our results also revealed that the activities and some characteristics of enzymes were changed during the horizontal gene transfer event. The specific activities of the fungal β-glucanases ranged from 26,529 to 41,209 U/mg of protein when barley-derived β-glucan was used as the substrate. They also demonstrated similar pH and temperature optima, substrate specificity, substrate affinity, and hydrolysis patterns. Nevertheless, BglA16 and BglM2, two recently duplicated β-glucanases, showed much higher k(cat) values than others. These results support the notion that duplicated β-glucanase genes, namely, bglA16 and bglM2, increase the reaction efficiency of β-glucanases and suggest that the catalytic efficiency of β-glucanase is likely to be a criterion determining the evolutionary fate of duplicate forms in N. patriciarum J11.  相似文献   

9.
A novel endo-β-1,4-glucanase (EG)-producing strain was isolated and identified as Penicillium purpurogenum KJS506 based on its morphology and internal transcribed spacer (ITS) rDNA gene sequence. P. purpurogenum produced one of the highest levels of EG (5.6 U mg-protein?1) with rice straw and corn steep powder as carbon and nitrogen sources, respectively. The extracellular EG was purified to homogeneity by sequential chromatography of P. purpurogenum culture supernatants on a DEAE sepharose column, a gel filtration column, and then on a Mono Q column with fast protein liquid chromatography. The purified EG was a monomeric protein with a molecular weight of 37 kDa and showed broad substrate specificity with maximum activity towards lichenan. P. purpurogenum EG showed t1/2 value of 2 h at 70 °C and catalytic efficiency of 118 ml mg?1 s?1, one of the highest levels seen for EG-producing microorganisms. Although EGs have been reported elsewhere, the high catalytic efficiency and thermostability distinguish P. purpurogenum EG.  相似文献   

10.
A novel alkaline β-1,3-1,4-glucanase (McLic1) from a thermophilic fungus, Malbranchea cinnamomea, was purified and biochemically characterized. McLic1 was purified to homogeneity with a purification fold of 3.1 and a recovery yield of 3.7 %. The purified enzyme was most active at pH 10.0 and 55 °C, and exhibited a wide range of pH stability (pH 4.0–10.0). McLic1 displayed strict substrate specificity for barley β-glucan, oat β-glucan and lichenan, but did not show activity towards other tested polysaccharides and synthetic p-nitrophenyl derivates, suggesting that it is a specific β-1,3-1,4-glucanase. The K m values for barley β-glucan, oat β-glucan and lichenan were determined to be 0.69, 1.11 and 0.63 mg mL?1, respectively. Moreover, the enzyme was stable in various non ionic surfactants, oxidizing agents and several commercial detergents. Thus, the alkaline β-1,3-1,4-glucanase may have potential in industrial applications, such as detergent, paper and pulp industries.  相似文献   

11.
The thermostablility and enzymatic activity of 1,3-1,4-β-glucanase (BglA) from Bacillus amyloliquefaciens was improved by modifying five (out of 12) ε-amino groups in lysine residues with nitrous acid. The optimal modification condition for BglA was determined as 30 mM nitrous acid at, 40 °C for 30 min. The optimally-modified BglA had higher specific activity and T 50 value, which were 3,370 U/mg and 70 °C, respectively. Its half-life values at 50 and 60 °C were extended and reached 58.5 and 49.5 min, respectively. Circular dichroism analysis showed that the secondary structures in modified BglA were almost the same with that of wild-type BglA. Thus, modification of lysine residues can simultaneously improve the activity and thermostability of β-glucanase which are ideal targets for further protein engineering.  相似文献   

12.
Teng C  Jia H  Yan Q  Zhou P  Jiang Z 《Bioresource technology》2011,102(2):1822-1830
A novel β-xylosidase gene (designated as PtXyl43) from thermophilic fungus Paecilomycesthermophila was cloned and extracellularly expressed in Escherichia coli. PtXyl43 belonging to glycoside hydrolase (GH) family 43 has an open reading frame of 1017 bp, encoding 338 amino acids without a predicted signal peptide. No introns were found by comparison of the PtXyl43 genomic DNA and cDNA sequences. The recombinant β-xylosidase (PtXyl43) was secreted into the culture medium in E. coli with a yield of 98.0 U mL(-1) in shake-flask cultures. PtXyl43 was purified 1.2-fold to homogeneity with a recovery yield of 61.5% from the cell-free culture supernatant. It appeared as a single protein band on SDS-PAGE with a molecular mass of approx 52.3 kDa. The enzyme exhibited an optimal activity at 55 °C and pH 7.0, respectively. This is the first report on the cloning and expression of a GH family 43 β-xylosidase gene from thermophilic fungi.  相似文献   

13.
Summary Alkalophilic Bacillus sp. AG-430 was isolated from soil and found to produce an extracellular -1,3-glucanase. This enzyme was purified by chromatography on DEAE-sepharose CL-6B, Sephadex G-75 and hydroxyapatite. The enzyme was extremely thermostable and lost only 10% of the original activity after incubation at 100°C for 10 min. The optimum temperature and pH for activity were 60°–65°C and 9–10, respectively. The molecular weight was estimated at about 35 000 on sodium dodecyl sulphate-polyacrylamide gel eletrophoresis and the pI was about 3.8. The enzyme hydrolysed laminaritetraose, but not laminaritriose, and the end-products detected in the hydrolysate were identified as glucose, laminaribiose and laminaritriose. The enzyme split laminarin at random and yielded glucose, laminaribiose, laminaritriose and higher oligosaccharides. The enzyme is a type of endo--1,3-glucanase.Offprint requests to: Y. Nogi  相似文献   

14.
15.
16.
17.

Objectives

To improve the thermostability and catalytic property of a mesophilic 1,3-1,4-β-glucanase by combinational mutagenesis and to test its effect in congress mashing.

Results

A mutant β-glucanase (rE-BglTO) constructed by combinational mutagenesis showed a 25 °C increase in optimal temperature (to 70 °C) a 19.5 °C rise in T 50 value and a 15.6 °C increase in melting temperature compared to wild-type enzyme. Its half-life values at 60 and 70 °C were 152 and 99 min, which were 370 and 800 % higher than those of wild-type enzyme. Besides, its specific activity and k cat value were 42,734 U mg?1 and 189 s?1 while its stability under acidic conditions was also improved. In flask fermentation, the catalytic activity of rE-BglTO reached 2381 U ml?1, which was 63 % higher than that of wild-type enzyme. The addition of rE-BglTO in congress mashing decreased the filtration time and viscosity by 21.3 and 9.6 %, respectively.

Conclusions

The mutant β-glucanase showed high catalytic activity and thermostability which indicated that rE-BglTO is a good candidate for application in the brewing industry.
  相似文献   

18.
Most reported microbial β-1,3-1,4-glucanases belong to the glycoside hydrolase family 16. Here, we report a new acidic family 7 endo-β-1,3-1,4-glucanase (Bgl7A) from the acidophilic fungus Bispora sp. MEY-1. The cDNA of Bgl7A was isolated and over-expressed in Pichia pastoris, with a yield of about 1,000 U ml–1 in a 3.7-l fermentor. The purified recombinant Bgl7A had three activity peaks at pH 1.5, 3.5, and 5.0 (maximum), respectively, and a temperature optimum at 60°C. The enzyme was stable at pH 1.0–8.0 and highly resistant to both pepsin and trypsin. Belonging to the group of non-specific endoglucanase, Bgl7A can hydrolyze not only β-glucan and cellulose but also laminarin and oat spelt xylan. The specific activity of Bgl7A against barley β-glucan and lichenan (4,040 and 2,740 U mg–1) was higher than toward carboxymethyl cellulose sodium (395 U mg–1), which was different from other family 7 endo-β-glucanases.  相似文献   

19.
A novel β-1,3–1,4-glucanase gene was identified in Bacillus sp. SJ-10 (KCCM 90078) isolated from jeotgal, a traditional Korean fermented fish. We analysed the β-1,3–1,4-glucanase gene sequence and examined the recombinant enzyme. The open reading frame of the gene encoded 244 amino acids. The sequence was not identical to any β-glucanases deposited in GenBank. The gene was cloned into pET22b(+) and expressed in Escherichia coli BL21. Purification of recombinant β-1,3–1,4-glucanase was conducted by affinity chromatography using a Ni-NTA column. Enzyme specificity of β-1,3–1,4-glucanase was confirmed based on substrate specificity. The optimal temperature and pH of the purified enzyme towards barley β-glucan were 50 °C and pH 6, respectively. More than 80 % of activity was retained at temperatures of 30–70 °C and pH values of 4–9, which differed from all other bacterial β-1,3–1,4-glucanases. The degradation products of barley β-glucan by β-1,3–1,4-glucanase were analysed using thin-layer chromatography, and ultimately glucose was produced by treatment with cellobiase.  相似文献   

20.
The thermostable 1,3–1,4-β-glucanase PtLic16A from the fungus Paecilomyces thermophila catalyzes stringent hydrolysis of barley β-glucan and lichenan with an outstanding efficiency and has great potential for broad industrial applications. Here, we report the crystal structures of PtLic16A and an inactive mutant E113A in ligand-free form and in complex with the ligands cellobiose, cellotetraose and glucotriose at 1.80 Å to 2.25 Å resolution. PtLic16A adopts a typical β-jellyroll fold with a curved surface and the concave face forms an extended ligand binding cleft. These structures suggest that PtLic16A might carry out the hydrolysis via retaining mechanism with E113 and E118 serving as the nucleophile and general acid/base, respectively. Interestingly, in the structure of E113A/1,3–1,4-β-glucotriose complex, the sugar bound to the − 1 subsite adopts an intermediate-like (α-anomeric) configuration. By combining all crystal structures solved here, a comprehensive binding mode for a substrate is proposed. These findings not only help understand the 1,3–1,4-β-glucanase catalytic mechanism but also provide a basis for further enzymatic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号