共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria 总被引:39,自引:0,他引:39
Candé C Cohen I Daugas E Ravagnan L Larochette N Zamzami N Kroemer G 《Biochimie》2002,84(2-3):215-222
Apoptosis-inducing factor (AIF) is a phylogenetically ancient mitochondrial intermembrane flavoprotein endowed with the unique capacity to induce caspase-independent peripheral chromatin condensation and large-scale DNA fragmentation when added to purified nuclei. In addition to its apoptogenic activity on nuclei, AIF can also participate in the regulation of apoptotic mitochondrial membrane permeabilization and exhibits an NADH oxidase activity. Under normal circumstances, AIF is secluded behind the outer mitochondrial membrane. However, upon apoptosis induction AIF translocates to the cytosol and the nucleus. Injection of anti-AIF antibodies or knockout of the AIF gene have demonstrated that AIF may be required for cell death occurring in response to some stimuli. In particular, inactivation of AIF renders embryonic stem cells resistant to cell death following growth factor withdrawal. Moreover, AIF is essential for programmed cell death during cavitation of embryoid bodies, the very first wave of (caspase-independent) cell death indispensable for mouse morphogenesis. We have recently found that AIF is neutralized by heat-shock protein (HSP) 70, in a reaction that appears to be independent of ATP or the ATP-binding domain (ABD) of HSP70 and thus differs from the previously described Apaf-1/HSP70 interaction (which requires ATP and the HSP70 ABD). Intriguingly, HSP70 lacking ABD (HSP70 Delta ABD) inhibits apoptosis induced by serum withdrawal, staurosporin, and menadione, three models of apoptosis which are also affected by micro-injection of anti-AIF antibody or genetic ablation of AIF. Altogether, these data suggest that AIF plays a role in the regulation of caspase-independent cell death. 相似文献
2.
Erik Norberg Boris Zhivotovsky 《Biochemical and biophysical research communications》2010,396(1):95-39643
Apoptosis might proceed through the activation of both caspase-dependent and -independent pathways. Apoptosis-inducing factor (AIF) was discovered as the first protein that mediated caspase-independent cell death. Initially, it was regarded as a soluble protein residing in the intermembrane space of mitochondria, from where it could be exported to the nucleus to participate in large-scale DNA fragmentation and chromatin condensation. However, later it was demonstrated that AIF is N-terminally anchored to the inner mitochondrial membrane. Hence, AIF must be liberated from its membrane anchor prior to being released into the cytosol. The current knowledge about the molecular mechanisms regulating the processing and release of AIF from the mitochondria will be summarized and discussed in this review. 相似文献
3.
PKB/Akt inhibits ceramide-induced apoptosis in neuroblastoma cells by blocking apoptosis-inducing factor (AIF) translocation 总被引:1,自引:0,他引:1
Ceramide is a sphingolipid that is abundant in the plasma membrane of neuronal cells and is thought to have regulatory roles in cell differentiation and cell death. Ceramide is known to induce apoptosis in a variety of different cell types, whereas the physiological significance of gangliosides, another class of sphingolipids, in these processes is still unclear. We examined the mechanisms of ceramide-induced cell death using a human neuroblastoma cell line. Treatment of the human neuroblastoma cell line SH-SY5Y with ceramide induced dephosphorylation of the PKB/Akt kinase and subsequent mitochondrial dysfunction. In addition, ceramide-induced neuronal cell death was not completely blocked by inhibition of caspase activity. This incomplete inhibition appeared to be attributable to the translocation of apoptosis-inducing factor to the nucleus. Furthermore, overexpression of active PKB/Akt or Bcl-2 successfully blocked ceramide-induced neuronal cell death through inhibition of the translocation of apoptosis-inducing factor. 相似文献
4.
Centrosomal protein 55 (Cep55), which is localized to the centrosome in interphase cells and recruited to the midbody during cytokinesis, is a regulator required for the completion of cell abscission. Up-regulation of Cep55 and inactivation of p53 occur in the majority of human cancers, raising the possibility of a link between these two genes. In this study we evaluated the role of p53 in Cep55 regulation. We demonstrated that Cep55 expression levels are well correlated with cancer cell growth rate and that p53 is able to negatively regulate Cep55 protein and promoter activity. Down-regulation of expression of Cep55 was accompanied by repression of polo-like kinase 1 (Plk1) levels due to p53 induction. Overexpression of Plk1 and knockdown of p53 expression both enhanced the post-translational protein stability of Cep55. BI 2356, a selective Plk1 inhibitor, however, prevented Cep55 accumulation in p53 knockdown cells while persistently keeping Plk1 levels elevated. Our results, therefore, indicate the existence of a p53-Plk1-Cep55 axis in which p53 negatively regulates expression of Cep55, through Plk1 which, in turn, is a positive regulator of Cep55 protein stability. 相似文献
5.
Interaction between epidermal growth factor (EGF) and EGF receptor (EGFR) promotes cell growth in most cell lines, but in a number of cell lines, EGF paradoxically inhibits proliferation. In the present study, we established a cell line expressing full-length human EGFR on membrane with a GFP fluorescence reporter at the C-terminal and studied the effects of EGF on cell proliferation in the transfected cell line. Our results suggested that low concentrations of EGF promoted proliferation, while high concentrations of EGF induced loss of adhesion, cell cycle arrest, apoptosis, and inhibition of proliferation. The effects of EGF on cell proliferation correlated well with the expression levels of EGFR. High concentrations of EGF induced both EGFR expression and apoptosis in a dose-dependent manner. Our study reported, for the first time, a relationship between the effects of EGF on cell proliferation and levels of EGFR expression in one cell line expressing different levels of EGFR caused by different concentrations of EGF treatment. The study should provide considerable insight into the effects of EGF on cell proliferation and tumor cell metastasis. 相似文献
6.
Kang BH Xia F Pop R Dohi T Socolovsky M Altieri DC 《The Journal of biological chemistry》2011,286(19):16758-16767
Survivin is a multifunctional protein with essential roles in cell division and inhibition of apoptosis, but the molecular underpinnings of its cytoprotective properties are poorly understood. Here we show that homozygous deletion of the aryl hydrocarbon receptor-interacting protein (AIP), a survivin-associated immunophilin, causes embryonic lethality in mice by embryonic day 13.5-14, increased apoptosis of Ter119(-)/CD71(-) early erythropoietic progenitors, and loss of survivin expression in its cytosolic and mitochondrial compartments in vivo. In import assays using recombinant proteins, AIP directly mediated the import of survivin to mitochondria, thus enabling its anti-apoptotic function, whereas a survivin 1-141 mutant that does not bind AIP was not imported to mitochondria and failed to inhibit apoptosis. AIP-directed mitochondrial import of survivin did not affect cell division, was independent of the organelle transmembrane potential, did not require the chaperone Heat Shock Protein 90 (Hsp90), and was inhibited by cytosolic factor(s) present in normal cells. shRNA knockdown of the mitochondrial import receptor Tom20 abolished mitochondrial import of survivin and sensitized tumor cells to apoptosis, whereas silencing of Tom70 had no effect. Therefore, an AIP-Tom20 recognition contributes to cell survival in development and cancer by mediating the mitochondrial import of survivin. 相似文献
7.
Ndebele K Gona P Jin TG Benhaga N Chalah A Degli-Esposti M Khosravi-Far R 《Apoptosis : an international journal on programmed cell death》2008,13(7):845-856
Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) initiate pathways of cell death in which caspase activation
is mediated either directly (without mitochondrial amplification), or indirectly via the release of apoptogenic factors from
mitochondria. Phospholipid scramblases (PLS) are enzymes that play a key role in cellular function by inducing bidirectional
movement of membrane lipids. Changes in mitochondrial membrane lipids, cardiolipin, are critical for mediating apoptotic response
in many cell-types. PLS3 is a phospholipid scramblase that is localized to mitochondria and is thought to be involved in the
regulation of apoptotic signals. Here we report that exogenous-expression of PLS3 enhances apoptotic death induced by TRAIL.
This is acheived by potentiating the mitochondrial arm of the death pathway. Thereby, PLS3 expression facilitates changes
in mitochondrial membrane lipids that promote the release of apoptogenic factors and consequent full activation and processing
of the caspase-9 and effector caspase-3. Moreover, we show that knock-down of endogenous PLS3 suppresses TRAIL-induced changes
in cardiolipin. Finally, we demonstrate that TRAIL-induced activation of PKC-delta mediates regulation of the PLS3-induced
changes in cardiolipin. 相似文献
8.
《Reproductive biology》2021,21(4):100576
Preeclampsia (PE) is a severe pregnancy-specific disorder. Previous findings indicated that pigment epithelium-derived factor (PEDF) was upregulated in placentas of women with PE. Here, we investigated the role of PEDF in trophoblast function, especially under hypoxia. The effects of hypoxia on the morphology of extravillous trophoblast (EVT)-derived HTR-8Svneo cells were observed under inverted microscope. Transfections with Lipofectamine LTX were performed according to the manufacturer's protocol. The expression of PEDF protein and mRNA were confirmed by immunofluorescence (IF) and quantitative real-time PCR (qPCR). Apoptosis was detected by transferase-mediated dUTP nick end labeling (TUNEL) assay, and proliferation of trophoblast was detected by CCK-8 method. The invasion capacity of trophoblast was assessed by Transwell assay. PEDF was expressed in HTR-8/SVneo under both normoxia and hypoxic stress. However, cells of hypoxia groups had higher expression level of PEDF, increased apoptosis and decreased invasion capability, as compared with normoxia group. Moreover, after transfection with plasmid expressing PEDF gene, overexpression of PEDF modulated trophoblast activities. In addition, PEDF expression was negatively associated with invasion while positively correlated with apoptosis.Our data suggest that PEDF is an important factor to maintain the biological function of trophoblast cells, thus representing a rational therapeutic target in PE. 相似文献
9.
Dong Y He Y de Boer L Stack MS Lumley JW Clements JA Hooper JD 《The Journal of biological chemistry》2012,287(13):9792-9803
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway. 相似文献
10.
Tian X Ye J Alonso-Basanta M Hahn SM Koumenis C Dorsey JF 《The Journal of biological chemistry》2011,286(33):29408-29416
11.
Ho TC Chen SL Shih SC Chang SJ Yang SL Hsieh JW Cheng HC Chen LJ Tsao YP 《The Journal of biological chemistry》2011,286(41):35943-35954
Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages. 相似文献
12.
13.
Protein localization within cells regulates accessibility for interactions with co-factors and substrates. The endoplasmic reticulum (ER) BiP co-factor ERdj4 is up-regulated by ER stress and has been implicated in ER-associated degradation (ERAD) of multiple unfolded secretory proteins. Several other ERdj family members tend to interact selectively with nascent proteins, presumably because those ERdj proteins associate with the Sec61 translocon that facilitates entry of nascent proteins into the ER. How ERdj4 selects and targets terminally misfolded proteins for destruction remains poorly understood. In this study, we determined properties of ERdj4 that might aid in this function. ERdj4 was reported to retain its signal sequence and to be resistant to mild detergent extraction, suggesting that it was an integral membrane protein. However, live cell photobleaching analyses of GFP-tagged ERdj4 revealed that the protein exhibits diffusion coefficients uncommonly high for an ER integral membrane protein and more similar to the mobility of a soluble luminal protein. Biochemical characterization established that the ERdj4 signal sequence is cleaved to yield a soluble protein. Importantly, we found that both endogenous and overexpressed ERdj4 associate with the integral membrane protein, Derlin-1. Our findings now directly link ERdj4 to the ERAD machinery and suggest a model in which ERjd4 could help recruit clients from throughout the ER to ERAD sites. 相似文献
14.
Zierler S Yao G Zhang Z Kuo WC Pörzgen P Penner R Horgen FD Fleig A 《The Journal of biological chemistry》2011,286(45):39328-39335
Transient receptor potential melastatin 7 (TRPM7) channels represent the major magnesium-uptake mechanism in mammalian cells and are key regulators of cell growth and proliferation. They are expressed abundantly in a variety of human carcinoma cells controlling survival, growth, and migration. These characteristics are the basis for recent interest in the channel as a target for cancer therapeutics. We screened a chemical library of marine organism-derived extracts and identified waixenicin A from the soft coral Sarcothelia edmondsoni as a strong inhibitor of overexpressed and native TRPM7. Waixenicin A activity was cytosolic and potentiated by intracellular free magnesium (Mg(2+)) concentration. Mutating a Mg(2+) binding site on the TRPM7 kinase domain reduced the potency of the compound, whereas kinase deletion enhanced its efficacy independent of Mg(2+). Waixenicin A failed to inhibit the closely homologous TRPM6 channel and did not significantly affect TRPM2, TRPM4, and Ca(2+) release-activated Ca(2+) current channels. Therefore, waixenicin A represents the first potent and relatively specific inhibitor of TRPM7 ion channels. Consistent with TRPM7 inhibition, the compound blocked cell proliferation in human Jurkat T-cells and rat basophilic leukemia cells. Based on the ability of the compound to inhibit cell proliferation through Mg(2+)-dependent block of TRPM7, waixenicin A, or structural analogs may have cancer-specific therapeutic potential, particularly because certain cancers accumulate cytosolic Mg(2+). 相似文献
15.
Yan W Zhang Y Zhang J Liu S Cho SJ Chen X 《The Journal of biological chemistry》2011,286(20):17478-17486
p53 is frequently mutated in tumor cells, and mutant p53 is often highly expressed due to its increased half-life. Thus, targeting mutant p53 for degradation might be explored as a therapeutic strategy to manage tumors that are addicted to mutant p53 for survival. Arsenic trioxide, a drug for patients with acute promyelocytic leukemia, is found to target and degrade a class of proteins with high levels of cysteine residues and vicinal thiol groups, such as promyelocytic leukemia protein (PML) and PML-retinoic acid receptor α fusion protein. Interestingly, wild type p53 is accumulated in cells treated with arsenic compounds, presumably due to arsenic-induced oxidative stresses. In this study, we found that wild type p53 is induced by arsenic trioxide in tumor cells, consistent with published studies. In contrast, we found that arsenic compounds degrade both endogenous and ectopically expressed mutant p53 in time- and dose-dependent manners. We also found that arsenic trioxide decreases the stability of mutant p53 protein through a proteasomal pathway, and blockage of mutant p53 nuclear export can alleviate the arsenic-induced mutant p53 degradation. Furthermore, we found that knockdown of endogenous mutant p53 sensitizes, whereas ectopic expression of mutant p53 desensitizes, tumor cells to arsenic treatment. Taken together, we found that mutant p53 is a target of arsenic compounds, which provides an insight into exploring arsenic compound-based therapy for tumors harboring a mutant p53. 相似文献
16.
Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells 总被引:27,自引:0,他引:27
Yu-quan Wei Xia Zhao Yoshitaka Kariya Keisuke Teshigawara Atsushi Uchida 《Cancer immunology, immunotherapy : CII》1995,40(2):73-78
Tumor cells often express elevated levels of heat-shock protein (HSP) 70. The present study was designed to invesitgate the role of HSP70 in the proliferation and survival of tumor cells in the human system. When Molt-4 and other tumor cells were treated in vitro with HSP70 antisense oligomer, they displayed propidiumiodide-stained condensed nuclei (intact or fragmented). A ladder-like pattern of DNA fragments was observed with HSP70 antisense-oligomer-treated tumor cells in agrose gel electrophoresis, which was consistent with internucleosomal DNA fragmentation. Flow cytometry analysis revealed the hypodiploid DNA peak of propidium-iodide-stained nuclei in the antisense-oligomer-treated cells. The apoptosis induced by HSP antisense oligomer was dose- and time-dependent. The antisense oligomer induced apoptosis mainly in tumor cells at G1 and S phase, resulting in an inhibition of cell proliferation. HSP70 antisense oligomer caused DNA-sequence-specific inhibition of HSP70 expression, which preceded apparent apoptosis. These results indicate that HSP70 antisense treatment inhibits the expression of HSP70, which in turn inhibits cell proliferation and induces apoptosis in tumor cells and suggest that HSP70 is required for tumor cells to proliferate and survive under normal condition. 相似文献
17.
18.
Qi D Huang S Miao R She ZG Quinn T Chang Y Liu J Fan D Chen YE Fu M 《The Journal of biological chemistry》2011,286(48):41692-41700
It is unclear how stress granule (SG) formation and cellular apoptosis are coordinately regulated. MCPIP1 (monocyte chemotactic protein-induced protein 1), also known as Zc3h12a, is a critical regulator of the inflammatory response and immune homeostasis. However, the role of MCPIP1 in stress response remains unknown. Here, we report that overexpression of MCPIP1 inhibited the assembly of SGs in response to various stresses. Conversely, MCPIP1-deficient splenocytes developed more SGs even without stress. On the other hand, overexpression of MCPIP1 sensitized RAW 264.7 cells to apoptosis under stress, whereas MCPIP1-deficient cells were resistant to stress-induced apoptosis. Mutagenesis study showed that the ability of MCPIP1 to repress SG formation is dependent on its deubiquitinating activity. Consistently, MCPIP1 negatively regulated stress-induced phosphorylation of eIF2α and thus released stress-induced inhibition of protein translation. However, MCPIP1 also inhibited 15-deoxy-Δ(12,14)-prostaglandin J(2)-induced SG formation, which was reported to be independent of eIF2α phosphorylation. Taken together, these results suggest that MCPIP1 coordinates SG formation and apoptosis during cellular stress and may play a critical role in immune homeostasis and resolution of macrophage inflammation. 相似文献
19.
Li X Wen W Liu K Zhu F Malakhova M Peng C Li T Kim HG Ma W Cho YY Bode AM Dong Z Dong Z 《The Journal of biological chemistry》2011,286(25):22291-22299
p21-activated kinase (PAK) 2, a member of the PAK family of serine/threonine protein kinases, plays an important role in physiological processes such as motility, survival, mitosis, and apoptosis. However, the role of PAK2 in resistance to chemotherapy is unclear. Here we report that PAK2 is highly expressed in human breast cancer cell lines and human breast invasive carcinoma tissue compared with a human non-tumorigenic mammary epithelial cell line and adjacent normal breast tissue, respectively. Interestingly, we found that PAK2 can bind with caspase-7 and phosphorylate caspase-7 at the Ser-30, Thr-173, and Ser-239 sites. Functionally, the phosphorylation of caspase-7 decreases its activity, thereby inhibiting cellular apoptosis. Our data indicate that highly expressed PAK2 mediates chemotherapeutic resistance in human breast invasive ductal carcinoma by negatively regulating caspase-7 activity. 相似文献
20.
Sun R Zhang Y Lv Q Liu B Jin M Zhang W He Q Deng M Liu X Li G Li Y Zhou G Xie P Xie X Hu J Duan Z 《The Journal of biological chemistry》2011,286(18):15918-15928
Toll-like receptor 3 (TLR3), a member of the pathogen recognition receptors, is widely expressed in various cells and has been shown to activate immune signaling pathways by recognizing viral double-stranded RNA. Recently, it was reported that the activation of TLR3 induced apoptosis in some cells, but the detailed molecular mechanism is not fully understood. In this study, we found that in endothelial cells polyinosinic-polycytidylic acid (poly(I-C)) induced dose- and time-dependent cell apoptosis, which was elicited by TLR3 activation, as TLR3 neutralization and down-regulation repressed the apoptosis. Poly(I-C) induced the activation of both caspases 8 and 9, indicating that TLR3 triggered the signaling of both the extrinsic and intrinsic apoptotic pathways. Poly(I-C) up-regulated tumor necrosis factor-related apoptosis-inducing ligand and its receptors, death receptors 4/5, resulting in initiating the extrinsic pathway. Furthermore, poly(I-C) down-regulated anti-apoptotic protein, B cell lymphoma 2 (Bcl-2), and up-regulated Noxa, a key Bcl-2 homology 3-only antagonist of Bcl-2, leading to the priming of the intrinsic pathway. A p53-related protein, the transactivating p63 isoform α (TAp63α), was induced by TLR3 activation and contributed to the activation of both the intrinsic and extrinsic apoptotic pathways. Both the cells deficient in p63 gene expression by RNA interference and cells that overexpressed the N-terminally truncated p63 isoform α (ΔNp63α), a dominant-negative variant of TAp63α, by gene transfection, survived TLR3 activation. Taken together, TAp63α is a crucial regulator downstream of TLR3 to induce cell death via death receptors and mitochondria. 相似文献