共查询到20条相似文献,搜索用时 15 毫秒
1.
This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca2+ release and maximal SR-releasable Ca2+ contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca2+ in response to 4-CmC did not differ significantly. SR Ca2+ release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca2+ indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(α-aminoethyl ether)-N,N,N′N′-tetraacetic acid (20 mM). Maximal SR Ca2+ release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca2+ release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca2+ release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca2+, account for the age-dependent decline in intracellular Ca2+ mobilization and specific force. 相似文献
2.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):563-570
AbstractObjective: Effect of peroxynitrite on SERCA1 activity was studied in correlation with enzyme carbonylation. Kinetic parameters and location of peroxynitrite effect on SERCA1 were determined.Methods: Carbonyls were determined by immunoblotting. FITC, NCD-4 and Trp fluorescence were used to indicate changes in cytosolic and transmembrane regions of SERCA1.Results: Peroxynitrite-concentration-dependent decrease of SERCA1 activity was associated with elevation of protein carbonyls. 4-HNE was not involved in carbonylation of SERCA1. Increased FITC fluorescence in the presence of peroxynitrite correlated with the decrease of the enzyme affinity to ATP.Discussion and conclusion: Peroxynitrite-induced SERCA1 carbonylation that was not accompanied with the formation of 4-HNE-SERCA1 adducts is indicative of direct oxidation of SERCA1. As assessed by FITC fluorescence and decreased affinity of the enzyme to ATP, peroxynitrite impairment was found to occur in the cytosolic ATP-binding region of SERCA1. 相似文献
3.
O. DeIbono 《The Journal of membrane biology》1995,146(1):91-99
Ca2+ transients and the rate of Ca2+ release (dCaREL/dt) from the sarcoplasmic reticulum (SR) in voltage-clamped, fast-twitch skeletal muscle fibers from the rat were studied with the double Vaseline gap technique and using mag-fura-2 and fura-2 as Ca2+ indicators. Single pulse experiments with different returning potentials showed that Ca2+ removal from the myoplasm is voltage independent. Thus, the myoplasmic Ca2+ removal (dCaREM/dt) was studied by fitting the decaying phase of the Ca2+ transient (Melzer, Ríos & Schneider, 1986) and dCaREL/dt was calculated as the difference between dCa/dt and dCaREM/dt. The fast Ca2+ release decayed as a consequence of Ca2+ inactivation of Ca2+ release. Double pulse experiments showed inactivation of the fast Ca2+ release depending on the prepulse duration. At constant interpulse interval, long prepulses (200 msec) induced greater inactivation of the fast Ca2+ release than shorter depolarizations (20 msec). The correlation (r) between the myoplasmic [Ca2+]i and the inhibited amount of Ca2+ release was 0.98. The [Ca2+]i for 50% inactivation of dCaREL/dt was 0.25 m, and the minimum number of sites occupied by Ca2+ to inactivate the Ca2+ release channel was 3.0. These data support Ca2+ binding and inactivation of SR Ca2+ release.This work was supported by Grant-in-Aid from the American Heart Association (National) and Muscular Dystrophy Association (USA). Part of this work was developed in Dr. Stefani's laboratory at Baylor College of Medicine. 相似文献
4.
The kinetic characteristics of Ca2+-ATPase reconstructed into proteoliposomes were studied with fluorescent probes. Reconstruction was made using purified resin XAD-2. The data obtained evidence for an electrogenic character of the reconstructed Ca2+-ATPase activity. 相似文献
5.
Male Wistar rats were treated with L-3,5,3'-triiodothyronine (T3) (500 micrograms.kg.-1.day-1) for 3 days. Cardiac sarcoplasmic reticulum (SR) was isolated at several time points during the induction of the hyperthyroid state and calcium transport and the levels of carnitine derivatives were determined. Calcium transport was augmented at all free calcium concentrations assayed (0.1-5.3 microM) 24 h following a single dose of T3; at 48 and 72 h, calcium transport was further augmented. Calcium-dependent phosphoprotein levels were increased in the SR of the 48- and 72-h T3-treated groups. Total SR carnitine was reduced after 24, 48, and 72 h of treatment. Long chain acylcarnitine (LCAC) levels were decreased in T3-treated SR at 48 and 72 h. This study shows that calcium transport is increased in T3-treated rat heart SR and that this increase may be related to a reduction in the endogenous level of LCAC in the SR membrane. 相似文献
6.
Ca(2+) influx and opening of Ca(2+)-activated K(+) channels in muscle fibers from control and mdx mice
下载免费PDF全文

Using the patch-clamp technique, we demonstrate that, in depolarized cell-attached patches from mouse skeletal muscle fibers, a short hyperpolarization to resting value is followed by a transient activation of Ca(2+)-activated K(+) channels (K(Ca)) upon return to depolarized levels. These results indicate that sparse sites of passive Ca(2+) influx at resting potentials are responsible for a subsarcolemmal Ca(2+) load high enough to induce K(Ca) channel activation upon muscle activation. We then investigate this phenomenon in mdx dystrophin-deficient muscle fibers, in which an elevated Ca(2+) influx and a subsequent subsarcolemmal Ca(2+) overload are suspected. The number of Ca(2+) entry sites detected with K(Ca) was found to be greater in mdx muscle. K(Ca) activity reflecting subsarcolemmal Ca(2+) load was also found to be independent of the activity of leak channels carrying inward currents at negative potentials in mdx muscle. These results indicate that the sites of passive Ca(2+) influx newly described in this study could represent the Ca(2+) influx pathways responsible for the subsarcolemmal Ca(2+) overload in mdx muscle fibers. 相似文献
7.
8.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling. 相似文献
9.
《Bioscience, biotechnology, and biochemistry》2013,77(5):862-863
A number of analogs of lunularic acid varying in the number of methylene carbons between the two benzene rings and in the substituents on their rings were prepared, and their effects on the growth of liverwort gemmaling, watercress, and timothy grass were investigated. Almost all the analogs tested were more inhibitory than lunularic acid, and a correlation between the structure and activity was observed. The differences in the growth-inhibition activity of analogs between higher and lower plants are also discussed. 相似文献
10.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase. 相似文献
11.
Sarcoballs: direct access to sarcoplasmic reticulum Ca2+-channels in skinned frog muscle fibers.
下载免费PDF全文

In skeletal muscle, twitch contraction is caused by the rapid release of Ca2+ from the sarcoplasmic reticulum (SR) (Endo, M. 1977. Physiol. Rev. 57:71-108) via Ca2+ conducting channels in the SR membrane (Smith, J. S., R. Coronado, and G. Meissner, 1985. Nature (Lond.). 316:446-449; Suarez-Isla, B. A., G. Orozco, P. F. Heller, and J. P. Froehlich. 1986. Proc. Natl. Acad. Sci. USA. 83:7741-7745). To facilitate study of these and other intracellular channels, we have developed a method which allows direct patch-clamp recording of currents through SR channels in native membrane. The Ca2+-release channel studied using this method exhibits two predominant conductance levels (80-100 pS and 120-160 pS), conducts Ca2+ preferentially over K+ (PCa/Pk = 6.5), is highly voltage sensitive, blocked on one side by ruthenium red (1 microM), and displays enhanced activity in the presence of caffeine (5 mM). Studied in skinned fibers, this channel appears fundamentally similar to homologous channels from isolated rabbit SR incorporated into bilayers, with some distinct differences. 相似文献
12.
The fast-twitch SERCA1 isoform of the sarcoplasmic reticulum Ca(2+)-ATPase was purified to homogeneity and conjugated to peroxidase. The SERCA1 probe showed high affinity binding to the immobilized monomeric enzyme, but not crosslinker-stabilized oligomers. This suggests a preferential complex formation via homo-dimerization, rather than interactions with established oligomeric structures. 相似文献
13.
Neelanjan Vishnu Muhammad Jadoon Khan Felix Karsten Lukas N. Groschner Markus Waldeck-Weiermair Rene Rost Seth Hallstr?m Hiromi Imamura Wolfgang F. Graier Roland Malli 《Molecular biology of the cell》2014,25(3):368-379
Multiple functions of the endoplasmic reticulum (ER) essentially depend on ATP within this organelle. However, little is known about ER ATP dynamics and the regulation of ER ATP import. Here we describe real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor. In vitro experiments prove that the ATP sensor is both Ca2+ and redox insensitive, which makes it possible to monitor Ca2+-coupled ER ATP dynamics specifically. The approach uncovers a cell type–specific regulation of ER ATP homeostasis in different cell types. Moreover, we show that intracellular Ca2+ release is coupled to an increase of ATP within the ER. The Ca2+-coupled ER ATP increase is independent of the mode of Ca2+ mobilization and controlled by the rate of ATP biosynthesis. Furthermore, the energy stress sensor, AMP-activated protein kinase, is essential for the ATP increase that occurs in response to Ca2+ depletion of the organelle. Our data highlight a novel Ca2+-controlled process that supplies the ER with additional energy upon cell stimulation. 相似文献
14.
Stout MA Raeymaekers L De Smedt H Casteels R 《Canadian journal of physiology and pharmacology》2002,80(6):588-603
Ca2+ transport was investigated in vesicles of sarcoplasmic reticulum subfractionated from bovine main pulmonary artery and porcine gastric antrum using digitonin binding and zonal density gradient centrifugation. Gradient fractions recovered at 15-33% sucrose were studied as the sarcoplasmic reticulum component using Fluo-3 fluorescence or 45Ca2+ Millipore filtration. Thapsigargin blocked active Ca2+ uptake and induced a slow Ca2+ release from actively loaded vesicles. Unidirectional 45Ca2+ efflux from passively loaded vesicles showed multicompartmental kinetics. The time course of an initial fast component could not be quantitatively measured with the sampling method. The slow release had a half-time of several minutes. Both components were inhibited by 20 microM ruthenium red and 10 mM Mg2+. Caffeine, inositol 1,4,5-trisphosphate, ATP, and diltiazem accelerated the slow component. A Ca2+ release component activated by ryanodine or cyclic adenosine diphosphate ribose was resolved with Fluo-3. Comparison of tissue responses showed that the fast Ca2+ release was significantly smaller and more sensitive to inhibition by Mg2+ and ruthenium red in arterial vesicles. They released more Ca2+ in response to inositol 1,4,5-trisphosphate and were more sensitive to activation by cyclic adenosine diphosphate ribose. Ryanodine and caffeine, in contrast, were more effective in gastric antrum. In each tissue, the fraction of the Ca2+ store released by sequential application of caffeine and inositol 1,4,5-trisphosphate depended on the order applied and was additive. The results indicate that sarcoplasmic reticulum purified from arterial and gastric smooth muscle represents vesicle subpopulations that retain functional Ca2+ channels that reflect tissue-specific pharmacological modulation. The relationship of these differences to physiological responses has not been determined. 相似文献
15.
Ca2+ channel agonist BAY-k 8644 does not elicit Ca2+ release from skeletal muscle sarcoplasmic reticulum 总被引:1,自引:0,他引:1
BAY-k 8644, a nifedipine analogue, promotes Ca2+ influx into excitable cells via plasma membrane voltage-sensitive Ca2+ channels. We report here that sarcoplasmic reticulum (SR) Ca2+ release channels are insensitive to BAY-k 8644, as studied in highly purified isolated fractions and in chemically skinned fibers of rabbit skeletal muscle. This result suggests that a subcellular heterogeneity exists among Ca2+ channels, at least with respect to drug-receptor sites. In the course of this study, however we found that BAY-k 8644 reversibly inhibits the SR Ca2+ pump, i.e., it decreases Ca2+ influx into the SR lumen, although at concentrations (IC50 = 3-5 X 10(-5) M) much higher than those effective on voltage-sensitive Ca2+ channels. 相似文献
16.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics. 相似文献
17.
Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle
下载免费PDF全文

《The Journal of general physiology》1996,107(1):1-18
Puzzled by recent reports of differences in specific ligand binding to muscle Ca2+ channels, we quantitatively compared the flux of Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscle fibers of an amphibian (frog) and a mammal (rat), voltage clamped in a double Vaseline gap chamber. The determinations of release flux were carried out by the "removal" method and by measuring the rate of Ca2+ binding to dyes in large excess over other Ca2+ buffers. To have a more meaningful comparison, the effects of stretching the fibers, of rapid changes in temperature, and of changes in the Ca2+ content of the SR were studied in both species. In both frogs and rats, the release flux had an early peak followed by fast relaxation to a lower sustained release. The peak and steady values of release flux, Rp and Rs, were influenced little by stretching. Rp in frogs was 31 mM/s (SEM = 4, n = 24) and in rats 7 +/- 2 mM/s (n = 12). Rs was 9 +/- 1 and 3 +/- 0.7 mM/s in frogs and rats, respectively. Transverse (T) tubule area, estimated from capacitance measurements and normalized to fiber volume, was greater in rats (0.61 +/- 0.04 microns-1) than in frogs (0.48 +/- 0.04 micron-1), as expected from the greater density of T tubuli. Total Ca in the SR was estimated as 3.4 +/- 0.6 and 1.9 +/- 0.3 mmol/liter myoplasmic water in frogs and rats. With the above figures, the steady release flux per unit area of T tubule was found to be fourfold greater in the frog, and the steady permeability of the junctional SR was about threefold greater. The ratio Rp/Rs was approximately 2 in rats at all voltages, whereas it was greater and steeply voltage dependent in frogs, going through a maximum of 6 at -40 mV, then decaying to approximately 3.5 at high voltage. Both Rp and Rs depended strongly on the temperature, but their ratio, and its voltage dependence, did not. Assuming that the peak of Ca2+ release is contributed by release channels not in contact with voltage sensors, or not under their direct control, the greater ratio in frogs may correspond to the relative excess of Ca2+ release channels over voltage sensors apparent in binding measurements. From the marked differences in voltage dependence of the ratio, as well as consideration of Ca(2+)-induced release models, we derive indications of fundamental differences in control mechanisms between mammalian and amphibian muscle. 相似文献
18.
Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies 总被引:4,自引:0,他引:4
Uptake and release of Ca2+ in heavy and light fractions of fragmented sarcoplasmic reticulum (FSR) isolated from frog and rabbit skeletal muscle was studied under conditions similar to those employed in skinned muscle fiber experiments, where ATP and Mg2+ concentrations were considered to be physiological and free Ca2+ concentration was kept constant during the Ca2+ uptake and release. Ca2+ level in FSR monotonously approached a steady state level which depended only on the final experimental conditions. Heavy fractions, but not light fractions, exhibited characteristics similar to those of Ca2+-induced Ca2+ release reported in skinned fiber studies: i) the rate and steady state level of Ca2+ uptake increased with increase in free Ca2+ concentration in the reaction medium up to 10(-6) M. With further increase in free Ca2+ concentration, the steady state level of Ca2+ taken up decreased while the Ca2+ uptake rate increased. ii) The steady state Ca2+ level was decreased by caffeine but increased by procaine or ruthenium red. Parallel measurement of Ca2+-ATPase activity clearly showed that these drugs modify the Ca2+ efflux but hardly affect the Ca2+-pump activity. It was concluded that the Ca2+-induced Ca2+ release mechanism was in operation at as low as 10(-6) M free Ca2+ concentration. Treatment of FSR with 0.6 M KCl did not have any significant effect. 相似文献
19.
Quantitative determination of Ca2+-dependent Mg2+-ATPase from sarcoplasmic reticulum in muscle biopsies. 总被引:1,自引:0,他引:1
下载免费PDF全文

The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies. 相似文献
20.
Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum 总被引:1,自引:0,他引:1
We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca(2+) release from the endoplasmic reticulum (ER) (i) in powering mitochondrial Ca(2+) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)). For this purpose, we expressed in HeLa cells aequorin-based Ca(2+)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H(1) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca(2+)](c) rise and drop in ER luminal [Ca(2+)] ([Ca(2+)](er)), and then the ER refilled with [Ca(2+)](c) at resting values. With histamine, [Ca(2+)](c) after the initial peak stabilized at a sustained plateau, and [Ca(2+)](er) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca(2+) response than glutamate ( approximately 15 versus approximately 65 microm). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca(2+)](c) plateau and the sustained ER Ca(2+) release and markedly increased the mitochondrial Ca(2+) response. Conversely, mitochondrial Ca(2+) uptake evoked by histamine was drastically reduced by very transient ( approximately 2-s) agonist applications. These data indicate that efficient mitochondrial Ca(2+) uptake depends on the preservation of high Ca(2+) microdomains at the mouth of ER Ca(2+) release sites close to mitochondria. This in turn depends on continuous Ca(2+) release balanced by Ca(2+) reuptake into the ER and maintained by Ca(2+) influx from the extracellular space. 相似文献