首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以生物合成为基础的代谢工程和组合生物合成   总被引:9,自引:0,他引:9  
代谢工程和组合生物合成在筛选和发展新型药物方面日益成为生物、化学和医药界关注的重点。基于聚酮和聚肽类天然产物的独特化学结构和良好生物活性,研究它们的生物合成机制,将为合理化遗传修饰生物合成途径获得结构类似物提供遗传和生物化学的基础,实现利用现代生物学和化学的技术手段在微生物体内进行药物开发的目的。  相似文献   

2.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   

3.
From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium‐dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
朱梦奕  何璟 《微生物学通报》2013,40(10):1920-1928
大规模基因组测序发现放线菌基因组内包含有极丰富的天然产物合成基因, 是非常有价值的资源。放线菌基因组中负责天然产物合成的基因通常成簇存在。要想完整地克隆这些较大的基因簇并且进行功能研究, 或者通过异源表达激活原本沉默的天然产物合成基因簇, 需要大容量的载体系统和合适的异源宿主。本文重点介绍了放线菌中常用于基因组大片段克隆的载体及异源表达宿主改造的研究进展。  相似文献   

5.
Metabolic engineering of isoprenoids   总被引:5,自引:0,他引:5  
The metabolic engineering of natural products has begun to prosper in the past few years due to genomic research and the discovery of biosynthetic genes. While the biosynthetic pathways and genes for some isoprenoids have been known for many years, new pathways have been found and known pathways have been further investigated. In this article, we review the recent advances in metabolic engineering of isoprenoids, focusing on the molecular genetics that affects pathway engineering the most. Examples in mono- sequi-, and diterpenoid synthesis as well as carotenoid production are discussed.  相似文献   

6.
The heterologous expression of natural product biosynthetic pathways is of increasing interest in biotechnology and drug discovery. It enables the (over)production of structurally complex substances through transfer of the biosynthetic genes from the original producer to more amenable heterologous hosts, and provides the basis to generate novel analogs through biosynthetic engineering. Furthermore, the lateral transfer of 'silent' (not expressed under standard laboratory conditions) secondary metabolite pathways or metagenomic DNA into surrogate host strains is expected to yield new, potentially bioactive compounds. This review discusses recent reports on the heterologous production of natural products with emphasis on polyketide and nonribosomally biosynthesized peptide compounds.  相似文献   

7.
天然产物类药物的合成生物学研究   总被引:1,自引:0,他引:1  
结构复杂多样的天然产物是现代药物的重要组成部分和新药发现的重要源泉。建立在基因工程及代谢工程、合成化学、基因组学、系统生物学等学科基础上的合成生物学研究对于结构复杂的天然产物类药物研究有特殊的意义。核心是通过在发酵友好、高效的微生物中设计、构建目标化合物的生物合成途径,经系统地调控和优化由重组微生物发酵生产来源稀缺的天然产物类药物或前体。该方法是不远的将来解决来源、成本与环境、资源协调问题最好的途径之一,也是解决海洋天然产物或特殊生境微生物药物面临的如何持续供应化合物这一个瓶颈问题的最佳选择。该文将对天然产物类药物合成生物学研究涉及的主要策略和重要进展进行阐述。  相似文献   

8.
Customizing biosynthesis of natural products to yield biologically active derivatives has captivated scientists in the field of biosynthetic research. To substantiate this goal, there are scores of obstacles to consider. To create novel metabolites by mutating amino acid residues in wild-type enzymes, a researcher must broaden the range of the enzymes substrate tolerance and increase its turnover rate during reaction catalysis. In the past decade, numerous gene clusters responsible for the biosynthesis of notable natural products have been identified from a variety of organisms. Several genes coding for type III polyketide synthases, particularly the chalcone synthase superfamily enzymes, were recently uncovered and expressed in E. coli. Furthermore, it was observed and reported how these recombinant enzymes are capable of producing essential metabolites in vitro. Three of the type III polyketide synthases, chalcone synthase, octaketide synthase and pentaketide chromone synthase, have been characterized and their active sites subjected to rational engineering for biosynthetic production of their analogs. Because they are encoded in a single open reading frame and are post-translationally small in size, type III polyketide synthases are ideal targets for protein engineering. The relative ease with which these genes are expressed makes molecular biological manipulation to obtain mutated enzymes more procurable, ameliorating analysis of its biosynthetic pathway. In summary, time devoted to modification of biosynthetic proteins and unravelling of the detailed reaction mechanisms involved in biosynthesis will be shortened, paving the way for a much wider scope for metabolic engineers in future. This review focuses on the use of chalcone synthase, octaketide synthase and pentaketide chromone synthase for rational biosynthetic engineering to generate molecular diversity and pursue innovative, biologically potent compounds.  相似文献   

9.
The exact sequence of events in biosyntheses of natural products is essential not only to understand and learn from nature's strategies and tricks to assemble complex natural products, but also for yield optimization of desired natural products, and for pathway engineering and muta-synthetic preparation of analogues of bioactive natural products. Biosyntheses of natural products were classically studied applying in vivo experiments, usually by combining incorporation experiments with stable-isotope labeled precursors with cross-feeding experiments of putative intermediates. Later genetic studies were dominant, which consist of gene cluster determination and analysis of gene inactivation experiments. From such studies various biosynthetic pathways were proposed, to a large extent just through in silico analyses of the biosynthetic gene clusters after DNA sequencing. Investigations of the complex biosyntheses of the angucycline group anticancer drugs landomycin, jadomycin and gilvocarcin revealed that in vivo and in silico studies were insufficient to delineate the true biosynthetic sequence of events. Neither was it possible to unambiguously assign enzyme activities, especially where multiple functional enzymes were involved. However, many of the intriguing ambiguities could be solved after in vitro reconstitution of major segments of these pathways, and subsequent systematic variations of the used enzyme mixtures. This method has been recently termed 'combinatorial biosynthetic enzymology'.  相似文献   

10.
Yarema KJ 《BioTechniques》2001,31(2):384-393
This review discusses new directions in the emerging field of carbohydrate engineering. Specifically, it describes substrate-based methodologies that are complementary to the recombinant DNA techniques that now dominate metabolic and cellular engineering endeavors. A substrate-based approach consists of intercepting a biosynthetic pathway with an unnatural analog of a metabolic intermediate. The unnatural compound competes with the endogenous substrate for biosynthetic incorporation into a cellular component by action of the natural enzymes of the cell. The incorporation of the unnatural compound into the cellular architecture can directly modulate cellular properties and biological processes. Alternatively, a molecular handle can be included in the design of the unnatural substrate that allows further elaboration upon reaction with an externally delivered reagent. The sialic acid biosynthetic pathway is presented as a model system to illustrate both the practical aspects and theoretical considerations of a substrate-based cellular engineering approach. Specific applications of carbohydrate-based cell surface engineering include chemical construction of new glycosylation patterns on cells, new approaches to targeting tumor cell with either diagnostic or therapeutic agents, and installation of novel receptors on cells for facilitating viral-mediated gene delivery.  相似文献   

11.
Enzymatic tools for engineering natural product glycosylation   总被引:1,自引:0,他引:1  
Glycosylated natural products have served as reliable platforms for the development of many existing front-line drugs. In an effort to explore the contribution of the sugar constituents of these compounds, research groups have focused upon the development of chemical and enzymatic tools to diversify natural product glycosylation. Among the complementary routes available, in vivo pathway engineering, also referred to as 'combinatorial biosynthesis', is an emerging method that relies upon the co-expression of sugar biosynthetic gene cassettes and glycosyltransferases in a host organism to generate novel glycosylated natural products. An overview of recent progress in combinatorial biosynthesis is highlighted in this review, emphasizing the elucidation of nucleotide-sugar biosynthetic pathways and recent developments on glycosyltransferases.  相似文献   

12.
大豆异黄酮代谢途径在大肠杆菌中的构建及表达   总被引:1,自引:0,他引:1  
自然界异黄酮合成途径主要存在于豆科植物中。以微生物为宿主研究异黄酮代谢,则需要将整个相关代谢途径的多酶体系组装到工程菌种,从而进行表达及代谢研究,这就需要用到多基因的转化和共表达技术。综合应用了多基因单载体和多基因多载体方法,将大豆异黄酮代谢途径中的五个关键酶基因导入到大肠杆菌中,对异黄酮代谢途径在大肠杆菌中的构建和表达进行了研究和探索,获得了含有五个外源基因的重组大肠杆菌;重组菌经IPTG诱导,以L-酪氨酸为底物进行发酵,发酵产物经过HPLC测定,结果表明和空白对照相比有新的代谢产物生成,初步断定为异黄酮类化合物。  相似文献   

13.
The bioactivity of many natural products including valuable antibiotics and anticancer therapeutics depends on their sugar moieties. Changes in the structures of these sugars can deeply influence the biological activity, specificity and pharmacological properties of the parent compounds. The chemical synthesis of such sugar ligands is exceedingly difficult to carry out and therefore impractical to establish on a large scale. Therefore, glycosyltransferases are essential tools for chemoenzymatic and in vivo approaches for the development of complex glycosylated natural products. In the last 10 years, several examples of successful alteration and diversification of natural product glycosylation patterns via metabolic pathway engineering and enzymatic glycodiversification have been described. Due to the relaxed substrate specificity of many sugar biosynthetic enzymes and glycosyltransferases involved in natural product biosynthesis, it is possible to obtain novel glycosylated compounds using different methods. In this review, we would like to provide an overview of recent advances in diversification of the glycosylated natural products and glycosyltransferase engineering.  相似文献   

14.
Highlights? Highlights of recent methods for enhancing natural product yields, activating cryptic clusters, and biosynthetic engineering of natural products. ? Advances in genomics have allowed identification of numerous cryptic biosynthetic clusters. ? Exploitation of regulatory pathways has led to cryptic cluster activation and increased natural product titres. ? Combinatorial biosynthesis, mutasynthesis and protein engineering have led to new derivatives of natural products with modulated biological activity.  相似文献   

15.
自然界异黄酮合成途径主要存在于豆科植物中。以微生物为宿主研究异黄酮代谢,则需要将整个相关代谢途径的多酶体系组装到工程菌种,从而进行表达及代谢研究,这就需要用到多基因的转化和共表达技术。综合应用了多基因单载体和多基因多载体方法,将大豆异黄酮代谢途径中的五个关键酶基因导入到大肠杆菌中,对异黄酮代谢途径在大肠杆菌中的构建和表达进行了研究和探索,获得了含有五个外源基因的重组大肠杆菌;重组菌经IPTG诱导,以L-酪氨酸为底物进行发酵,发酵产物经过HPLC测定,结果表明和空白对照相比有新的代谢产物生成,初步断定为异黄酮类化合物。  相似文献   

16.
17.
18.
Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as “reverse-discovered” natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome-size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs.  相似文献   

19.
The diversity of plant natural product (PNP) molecular structures is reflected in the variety of biochemical and genetic pathways that lead to their formation and accumulation. Plant secondary metabolites are important commodities, and include fragrances, colorants, and medicines. Increasing the extractable amount of PNP through plant breeding, or more recently by means of metabolic engineering, is a priority. The prerequisite for any attempt at metabolic engineering is a detailed knowledge of the underlying biosynthetic and regulatory pathways in plants. Over the past few decades, an enormous body of information about the biochemistry and genetics of biosynthetic pathways involved in PNPs production has been generated. In this review, we focus on the three large classes of plant secondary metabolites: terpenoids (or isoprenoids), phenylpropanoids, and alkaloids. All three provide excellent examples of the tremendous efforts undertaken to boost our understanding of biosynthetic pathways, resulting in the first successes in plant metabolic engineering. We further consider what essential information is still missing, and how future research directions could help achieve the rational design of plants as chemical factories for high-value products.  相似文献   

20.
黄胜  虞沂 《微生物学报》2016,56(3):383-396
二硫吡咯酮类抗生素是一类具有独特的吡咯酮二硫杂环戊二烯(4H-[1,2]二硫[4,3-b]吡咯-5-酮)骨架的化合物的总称。基于N-7位酰基侧链的不同以及N-4位是否含有甲基,可分为N-methyl-Nacylpyrrothine、N-acylpyrrothine和thiomarinols等类别。迄今为止,已有27种该类化合物被报道,重要代表包括全霉素(holomycin)、硫藤黄菌素(thiolutin)、金霉素(aureothricin)以及最近发现的thiomarinols。就生物活性而言,二硫吡咯酮类抗生素具有广谱的抗细菌活性,对多种微生物,包括革兰氏阴性菌、革兰氏阳性菌以及寄生虫都有较好的杀灭活性。甚至一些二硫吡咯酮衍生物表现出较强的抗肿瘤活性。近几年来,多个二硫吡咯酮类抗生素的生物合成基因簇相继被报道,其生物合成机理也逐步被阐明。本文将针对目前国内外二硫吡咯酮类抗生素的生物合成研究进展,以及在组合生物合成与代谢工程领域所取得的成果进行综述,旨在为通过合成生物学的方法创造结构新颖、高效低毒的"非天然"二硫吡咯酮类化合物提供理论借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号