首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KcsA is a prokaryotic potassium channel formed by the assembly of four identical subunits around a central aqueous pore. Although the high-resolution X-ray structure of the transmembrane portion of KcsA is known [Doyle, D. A., Morais, C. J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77], the identification of the molecular determinant(s) involved in promoting subunit tetramerization remains to be determined. Here, C-terminal deletion channel mutants, KcsA Delta125-160 and Delta120-160, as well as 1-125 KcsA obtained from chymotrypsin cleavage of full-length 1-160 KcsA, have been used to evaluate the role of the C-terminal segment on the stability and tetrameric assembly of the channel protein. We found that the lack of the cytoplasmic C-terminal domain of KcsA, and most critically the 120-124 sequence stretch, impairs tetrameric assembly of channel subunits in a heterologous E. coli expression system. Molecular modeling of KcsA predicts that, indeed, such sequence stretch provides intersubunit interaction sites by hydrogen bonding to amino acid residues in N- and C-terminal segments of adjacent subunits. However, once the KcsA tetramer is assembled, its remarkable in vitro stability to detergent or to heat-induced dissociation into subunits is not greatly influenced by whether the entire C-terminal domain continues being part of the protein. Finally and most interestingly, it is observed that, even in the absence of the C-terminal domain involved in tetramerization, reconstitution into membrane lipids promotes in vitro KcsA tetramerization very efficiently, an event which is likely mediated by allowing proper hydrophobic interactions involving intramembrane protein domains.  相似文献   

2.
KcsA, a potassium channel from Streptomyces lividans, is a good model for probing the general working mechanism of potassium channels. To date, the physiological activator of KcsA is still unknown, but in vitro studies showed that it could be opened by lowering the pH of the cytoplasmic compartment to 4. The C-terminal domain (CTD, residues 112-160) was proposed to be the modulator for this pH-responsive event. Here, we support this proposal by examining the pH profiles of: (a) thermal stability of KcsA with and without its CTD and (b) aggregation properties of a recombinant fragment of CTD. We found that the presence of the CTD weakened and enhanced the stability of KcsA at acidic and basic pH values, respectively. In addition, the CTD fragment oligomerized at basic pH values with a transition profile close to that of channel opening. Our results are consistent with the CTD being a pH modulator. We propose herein a mechanism on how this domain may contribute to the pH-dependent opening of KcsA.  相似文献   

3.
The KcsA channel is a representative potassium channel that is activated by changes in pH. Previous studies suggested that the region that senses pH is entirely within its transmembrane segments. However, we recently revealed that the cytoplasmic domain also has an important role, because its conformation was observed to change dramatically in response to pH changes. Here, to investigate the effects of the cytoplasmic domain on pH-dependent gating, we made a chimera mutant channel consisting of the cytoplasmic domain of the KcsA channel and the transmembrane region of the MthK channel. The chimera showed a pH dependency similar to that of KcsA, indicating that the cytoplasmic domain can act as a pH sensor. To identify how this region detects pH, we substituted certain cytoplasmic domain amino acids that are normally negatively charged at pH 7 for neutral ones in the KcsA channels. These mutants opened independently of pH, suggesting that electrostatic charges have a major role in the cytoplasmic domain's ability to sense and respond to pH.  相似文献   

4.
The cytoplasmic C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is an amphiphilic domain that forms a helical bundle with four-fold symmetry mediated by hydrophobic and electrostatic interactions. Previously we have established that a CTD-derived 34-residue peptide associates into a tetramer in a pH-dependent manner (Kamnesky et al., JMB 2012;418:237-247). Here we further investigate the molecular determinants of tetramer formation in the CTD by characterizing the kinetics of monomer-tetramer equilibrium for 10 alanine mutants using NMR, sedimentation equilibrium (SE) and molecular dynamics simulation. NMR and SE concur in finding single-residue contributions to tetramer stability to be in the 0.5 to 3.5 kcal/mol range. Hydrophobic interactions between residues lining the tetramer core generally contributed more to formation of tetramer than electrostatic interactions between residues R147, D149 and E152. In particular, alanine replacement of residue R147, a key contributor to inter-subunit salt bridges, resulted in only a minor effect on tetramer dissociation. Mutations outside of the inter-subunit interface also influenced tetramer stability by affecting the tetramerization on-rate, possibly by changing the inherent helical propensity of the peptide. These findings are interpreted in the context of established paradigms of protein-protein interactions and protein folding, and lay the groundwork for further studies of the CTD in full-length KcsA channels.  相似文献   

5.
KcsA: it's a potassium channel   总被引:6,自引:0,他引:6       下载免费PDF全文
Ion conduction and selectivity properties of KcsA, a bacterial ion channel of known structure, were studied in a planar lipid bilayer system at the single-channel level. Selectivity sequences for permeant ions were determined by symmetrical solution conductance (K(+) > Rb(+), NH(4)(+), Tl(+) > Cs(+), Na(+), Li(+)) and by reversal potentials under bi-ionic or mixed-ion conditions (Tl(+) > K(+) > Rb(+) > NH(4)(+) > Na(+), Li(+)). Determination of reversal potentials with submillivolt accuracy shows that K(+) is over 150-fold more permeant than Na(+). Variation of conductance with concentration under symmetrical salt conditions is complex, with at least two ion-binding processes revealing themselves: a high affinity process below 20 mM and a low affinity process over the range 100-1,000 mM. These properties are analogous to those seen in many eukaryotic K(+) channels, and they establish KcsA as a faithful structural model for ion permeation in eukaryotic K(+) channels.  相似文献   

6.
Human ether-á-go-go-related gene (hERG) potassium channels have voltage-dependent closing (deactivation) kinetics that are unusually slow. A Per-Arnt-Sim (PAS) domain in the cytoplasmic N-terminal region of hERG regulates slow deactivation by making a direct interaction with another part of the hERG channel. The mechanism for slow deactivation is unclear, however, because the other regions of the channel that participate in regulation of deactivation are not known. To identify other functional determinants of slow deactivation, we generated hERG channels with deletions of the cytoplasmic C-terminal regions. We report that hERG channels with deletions of the cyclic nucleotide-binding domain (CNBD) had accelerated deactivation kinetics that were similar to those seen in hERG channels lacking the PAS domain. Channels with dual deletions of the PAS domain and the CNBD did not show further acceleration in deactivation, indicating that the PAS domain and the CNBD regulate deactivation by a convergent mechanism. A recombinant PAS domain that we previously showed could directly regulate PAS domain-deleted channels did not regulate channels with dual deletions of the PAS domain and CNBD, suggesting that the PAS domain did not interact with CNBD-deleted channels. Biochemical protein interaction assays showed that glutathione S-transferase (GST)-PAS (but not GST) bound to a CNBD-containing fusion protein. Coexpression of PAS domain-deleted subunits (with intact C-terminal regions) and CNBD-deleted subunits (with intact N-terminal regions) resulted in channels with partially restored slow deactivation kinetics, suggesting regulatory intersubunit interactions between PAS domains and CNBDs. Together, these data suggest that the mechanism for regulation of slow deactivation in hERG channels is an interaction between the N-terminal PAS domain and the C-terminal CNBD.  相似文献   

7.
Molecular dynamics study of the KcsA potassium channel   总被引:5,自引:3,他引:2       下载免费PDF全文
TW Allen  S Kuyucak    SH Chung 《Biophysical journal》1999,77(5):2502-2516
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately (1)/(3) of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.  相似文献   

8.
The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer.  相似文献   

9.
The Escherichia coli DNA mismatch repair (MMR) protein MutS is essential for the correction of DNA replication errors. In vitro, MutS exists in a dimer/tetramer equilibrium that is converted into a monomer/dimer equilibrium upon deletion of the C-terminal 53 amino acids. In vivo and in vitro data have shown that this C-terminal domain (CTD, residues 801–853) is critical for tetramerization and the function of MutS in MMR and anti-recombination. We report the expression, purification and analysis of the E.coli MutS-CTD. Secondary structure prediction and circular dichroism suggest that the CTD is folded, with an α-helical content of 30%. Based on sedimentation equilibrium and velocity analyses, MutS-CTD forms a tetramer of asymmetric shape. A single point mutation (D835R) abolishes tetramerization but not dimerization of both MutS-CTD and full-length MutS. Interestingly, the in vivo and in vitro MMR activity of MutSCF/D835R is diminished to a similar extent as a truncated MutS variant (MutS800, residues 1–800), which lacks the CTD. Moreover, the dimer-forming MutSCF/D835R has comparable DNA binding affinity with the tetramer-forming MutS, but is impaired in mismatch-dependent activation of MutH. Our data support the hypothesis that tetramerization of MutS is important but not essential for MutS function in MMR.  相似文献   

10.
The thermodynamics of cation permeation through the KcsA K(+) channel selectivity filter is studied from the perspective of a physically transparent semimicroscopic model using Monte Carlo free energy integration. The computational approach chosen permits dissection of the separate contributions to ionic stabilization arising from different parts of the channel (selectivity filter carbonyls, single-file water, cavity water, reaction field of bulk water, inner helices, ionizable residues). All features play important roles; their relative significance varies with the ion's position in the filter. The cavity appears to act as an electrostatic buffer, shielding filter ions from structural changes in the inner pore. The model exhibits K(+) vs. Na(+) selectivity, and roughly isoenergetic profiles for K(+) and Rb(+), and discriminates against Cs(+), all in agreement with experimental data. It also indicates that Ba(2+) and Na(+) compete effectively with permeant ions at a site near the boundary between the filter and the cavity, in the vicinity of the barium blocker site.  相似文献   

11.
Lipid binding to the potassium channel KcsA from Streptomyces lividans has been studied using quenching of the fluorescence of Trp residues by brominated phospholipids. It is shown that binding of phospholipids to nonannular lipid binding sites on KcsA, located one each at the four protein-protein interfaces in the tetrameric structure, is specific for anionic phospholipids, zwitterionic phosphatidylcholine being unable to bind at the sites. The binding constant for phosphatidylglycerol of 3.0 ± 0.7 mol fraction−1 means that in a membrane containing ~20 mol% phosphatidylglycerol, as in the Escherichia coli inner membrane, the nonannular sites will be ~37% occupied by phosphatidylglycerol. The binding constant for phosphatidic acid is similar to that for phosphatidylglycerol but binding constants for phosphatidylserine and cardiolipin are about double those for phosphatidylglycerol. Binding to annular sites around the circumference of the KcsA tetramer are different on the extracellular and intracellular faces of the membrane. On the extracellular face of the membrane the binding constants for anionic lipids are similar to those for phosphatidylcholine, the lack of specificity being consistent with the lack of any marked clusters of charged residues on KcsA close to the membrane on the extracellular side. In contrast, binding to annular sites on the intracellular side of the membrane shows a distinct structural specificity, with binding of phosphatidic acid and phosphatidylglycerol being stronger than binding of phosphatidylcholine, whereas binding constants for phosphatidylserine and cardiolipin are similar to that for phosphatidylcholine. It is suggested that this pattern of binding follows from the pattern of charge distribution on KcsA on the intracellular side of the membrane.  相似文献   

12.
Intracellular tetraethylammonium (TEA) inhibition was studied at the single-channel level in the KcsA potassium channel reconstituted in planar lipid bilayers. TEA acts as a fast blocker (resulting in decreased current amplitude) with an affinity in the 75 mM range even at high bandwidth. Studies over a wide voltage range reveal that TEA block has a complex voltage-dependence that also depends on the ionic conditions. These observations are examined in the context of permeation models to extend our understanding of the coupling between permeant ions and TEA blockade.  相似文献   

13.
The tetrameric prokaryotic potassium channel KcsA is activated by protons acting on the intracellular aspect of the protein and inactivated through conformational changes in the selectivity filter. Inactivation is modulated by a network of interactions within each protomer between the pore helix and residues at the external entrance of the channel. Inactivation is suppressed by the E71A mutation, which perturbs the stability of this network. Here, cell-free protein synthesis followed by protein purification by sodium dodecyl sulfate–polyacrylamide gel electrophoresis was used to produce heterotetramers of KcsA that contain different combinations of wild-type and E71A subunits. Single-channel recordings from these heterotetramers reveal how the network of interactions in individual protomers affects ionic conduction and channel inactivation, suggesting that the latter is a cooperative process.  相似文献   

14.
A voltage-gated potassium channel Kv10.2 is expressed in the nervous system, but its functions and involvement in the development of human disease remain poorly understood. Mutant forms of the Kv10.2 channel were found in patients with epileptic encephalopathy and autism. Molecular modeling of the channel spatial structure is an important tool for gaining knowledge about the molecular aspects of the channel functioning and mechanisms responsible for pathogenesis. In the present work, molecular modeling of the helical fragment of the human Kv10.2 (hEAG2) C-terminal domain in dimeric, trimeric, and tetrameric forms was performed. The stability of all forms was confirmed by molecular dynamics simulation. Contacts and interactions, stabilizing the structure, were identified.  相似文献   

15.
KcsA is a proton-activated K+ channel that is regulated at two gates: an activation gate located in the inner entrance of the pore and an inactivation gate at the selectivity filter. Previously, we revealed that the cytoplasmic domain (CPD) of KcsA senses proton and that electrostatic changes of the CPD influences the opening and closing of the activation gate. However, our previous studies did not reveal the effect of CPD on the inactivation gate because we used a non-inactivating mutant (E71A). In the present study, we used mutants that did not harbor the E71A mutation, and showed that the electrostatic state of the CPD influences the inactivation gate. Three novel CPD mutants were generated in which some negatively charged amino acids were replaced with neutral amino acids. These CPD mutants conducted K+, but showed various inactivation properties. Mutants carrying the D149N mutation showed high open probability and slow inactivation, whereas those without the D149N mutation showed low open probability and fast inactivation, similar to wild-type KcsA. In addition, mutants with D149N showed poor K+ selectivity, and permitted Na+ to flow. These results indicated that electrostatic changes in the CPD by D149N mutation triggered the loss of fast inactivation and changes in the conformation of selectivity filter. Additionally, the loss of fast inactivation induced by D149N was reversed by R153A mutation, suggesting that not only the electrostatic state of D149, but also that of R153 affects inactivation.  相似文献   

16.
Luzhkov VB  Aqvist J 《FEBS letters》2001,495(3):191-196
We report results from automated docking and microscopic molecular dynamics simulations of the tetraethylammonium (TEA) complexes with KcsA. Binding modes and energies for TEA binding at the external and internal sides of the channel pore are examined utilising the linear interaction energy method. Effects of the channel ion occupancy (based on our previous results for the ion permeation mechanisms) on the binding energies are considered. Calculations show that TEA forms stable complexes at both the external and internal entrances of the selectivity filter. Furthermore, the effects of the Y82V mutation are evaluated and the results show, in agreement with experimental data, that the mutant has a significantly reduced binding affinity for TEA at the external binding site, which is attributed to stabilising hydrophobic interactions between the ligand and the tyrosines.  相似文献   

17.
Biological membranes are composed of a wide variety of lipids. Phosphoinositides (PIPns) in the membrane inner leaflet only account for a small percentage of the total membrane lipids but modulate the functions of various membrane proteins, including ion channels, which play important roles in cell signaling. KcsA, a prototypical K+ channel that is small, simple, and easy to handle, has been broadly examined regarding its crystallography, in silico molecular analysis, and electrophysiology. It has been reported that KcsA activity is regulated by membrane phospholipids, such as phosphatidylglycerol. However, there has been no quantitative analysis of the correlation between direct lipid binding and the functional modification of KcsA, and it is unknown whether PIPns modulate KcsA function. Here, using contact bubble bilayer recording, we observed that the open probability of KcsA increased significantly (from about 10% to 90%) when the membrane inner leaflet contained only a small percentage of PIPns. In addition, we found an increase in the electrophysiological activity of KcsA correlated with a larger number of negative charges on PIPns. We further analyzed the affinity of the direct interaction between PIPns and KcsA using microscale thermophoresis and observed a strong correlation between direct lipid binding and the functional modification of KcsA. In conclusion, our approach was able to reconstruct the direct modification of KcsA by PIPns, and we propose that it can also be applied to elucidate the mechanism of modification of other ion channels by PIPns.  相似文献   

18.
Guidoni L  Torre V  Carloni P 《FEBS letters》2000,477(1-2):37-42
Molecular dynamics simulations and electrostatic modeling are used to investigate structural and dynamical properties of the potassium ions and of water molecules inside the KcsA channel immersed in a membrane-mimetic environment. Two potassium ions, initially located in the selectivity filter binding sites, maintain their position during 2 ns of dynamics. A third potassium ion is very mobile in the water-filled cavity. The protein appears engineered so as to polarize water molecules inside the channel cavity. The resulting water induced dipole and the positively charged potassium ion within the cavity are the key ingredients for stabilizing the two K(+) ions in the binding sites. These two ions experience single file movements upon removal of the potassium in the cavity, confirming the role of the latter in ion transport through the channel.  相似文献   

19.
Zhou Y  MacKinnon R 《Biochemistry》2004,43(17):4978-4982
The hydrophobic cell membrane interior presents a large energy barrier for ions to permeate. Potassium channels reduce this barrier by creating a water-filled cavity at the middle of their ion conduction pore to allow ion hydration and by directing the C-terminal "end charge" of four alpha-helices toward the water-filled cavity. Here we have studied the interaction of monovalent cations with the cavity of the KcsA K(+) channel using X-ray crystallography. In these studies, Tl(+) was used as an analogue for K(+) and the total ion-stabilization energy for Tl(+) in the cavity was estimated by measuring its binding affinity. Binding affinity for the Na(+) ion was also measured, revealing a weak selectivity ( approximately 7-fold) favoring Tl(+) over Na(+). The structures of the cavity containing Na(+), K(+), Tl(+), Rb(+), and Cs(+) are compared. These results are consistent with a fairly large (more negative than -100 mV) electrostatic potential inside the cavity, and they also imply the presence of a weak nonelectrostatic component to a cation's interaction with the cavity.  相似文献   

20.
The C-terminal domain of the voltage-gated potassium channel Kv2.1 is shown to have a role in channel assembly using dominant negative experiments in Xenopus oocytes. Kv2.1 channel polypeptides were co-expressed with a number of polypeptide fragments of the cytosolic C-terminus and the assembly of functional channel homotetramers quantified electrophysiologically using the two electrode voltage clamp technique. Co-expression of C-terminal polypeptides corresponding to the final 440, 318, 220 and 150 amino acid residues of Kv2.1 all resulted in a significant reduction in the functional expression of the full-length channel. A truncated version of Kv2.1 lacking the final 318 amino acids of the C-terminal domain (Kv2. 11-535) exhibited similar electrophysiological properties to the full-length channel. Co-expression with either the 440 or 318 residue polypeptides resulted in a reduction in the activity of the truncated channel. In contrast, the 220 and 150 residue C-terminal fragments had no effect on Kv2.11-535 activity. These data demonstrate that C-terminal interactions are important for driving Kv2.1 channel assembly and that distinct regions of the C-terminal domain may have differential effects on the formation of functional tetramers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号