首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Co‐expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity‐based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain‐like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar‐processing enzyme and serine hydrolase activity. A robust concentration‐dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin–PLCP interactions. Activity‐based proteomics revealed that nine different Cathepsin‐L/‐F‐like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin‐B/‐H‐like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin‐containing proteases from the Resistant‐to‐Desiccation‐21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.  相似文献   

2.
3.
Agroinfiltrated Nicotiana benthamiana is a flexible and scalable platform for recombinant protein (RP) production, but its great potential is hampered by plant proteases that degrade RPs. Here, we tested 29 candidate protease inhibitors (PIs) in agroinfiltrated N. benthamiana leaves for enhancing accumulation of three unrelated RPs: glycoenzyme α‐Galactosidase; glycohormone erythropoietin (EPO); and IgG antibody VRC01. Of the previously described PIs enhancing RP accumulation, we found only cystatin SlCYS8 to be effective. We identified three additional new, unrelated PIs that enhance RP accumulation: N. benthamiana NbPR4, NbPot1 and human HsTIMP, which have been reported to inhibit cysteine, serine and metalloproteases, respectively. Remarkably, accumulation of all three RPs is enhanced by each PI similarly, suggesting that the mechanism of degradation of unrelated RPs follows a common pathway. Inhibitory functions HsTIMP and SlCYS8 are required to enhance RP accumulation, suggesting that their target proteases may degrade RPs. Different PIs additively enhance RP accumulation, but the effect of each PI is dose‐dependent. Activity‐based protein profiling (ABPP) revealed that the activities of papain‐like Cys proteases (PLCPs), Ser hydrolases (SHs) or vacuolar processing enzymes (VPEs) in leaves are unaffected upon expression of the new PIs, whereas SlCYS8 expression specifically suppresses PLCP activity only. Quantitative proteomics indicates that the three new PIs affect agroinfiltrated tissues similarly and that they all increase immune responses. NbPR4, NbPot1 and HsTIMP can be used to study plant proteases and improve RP accumulation in molecular farming.  相似文献   

4.
The field of activity-based proteomics makes use of small molecule active site probes to monitor distinct subsets of enzymatic proteins. While a number of reactive functional groups have been applied to activity-based probes (ABPs) that target diverse families of proteases, there remains a continual need for further evaluation of new probe scaffolds and reactive functional groups for use in ABPs. In this study we evaluate the utility of the, alpha,beta-unsaturated ketone reactive group for use in ABPs targeting the papain-family of cysteine proteases. We find that this reactive group shows highly selective labeling of cysteine cathepsins in both intact cells and total cell extracts. We observed a variable degree of background labeling that depended on the type of tag and linker used in the probe synthesis. The relative ease of synthesis of this class of compounds provides the potential for further derivatization to generate new families of cysteine protease ABPs with unique specificity and labeling properties.  相似文献   

5.
6.
New activity-based probes are essential for expanding studies on the hundreds of serine and cysteine proteases encoded by the genome of Arabidopsis thaliana. To monitor protease activities in plant extracts, we generated biotinylated peptides containing a beta-lactone reactive group. These probes cause strong labeling in leaf proteomes. Unexpectedly, labeling was detected at the N terminus of PsbP, nonproteolytic protein of photosystem II. Inhibitor studies and reverse genetics led to the discovery that this unusual modification is mediated by a single plant-specific, papain-like protease called RD21. In cellular extracts, RD21 accepts both beta-lactone probes and peptides as donor molecules and ligates them, probably through a thioester intermediate, to unmodified N termini of acceptor proteins.  相似文献   

7.
Papain-like cysteine proteases (PLCPs) play crucial roles in plant–pathogen/pest interactions. During these parasitic interactions, PLCPs act on non-self substrates, provoking the selection of counteracting inhibitors and other means to evade proteolysis. We review examples of PLCPs acting on molecular battlefields in the extracellular space, plant cytoplasm and herbivore gut. Examples are maize Mir1 ( M aize i nbred r esistance 1 ), tomato Rcr3 ( R equired for C ladosporium r esistance- 3 ), Pseudomonas AvrRpt2 and AurPphB, insect DvCAL1 ( D iabrotica v irgifera c athepsin L -like p rotease- 1 ) and nematode MiCpl1 ( M eloidogyne i ncognita c athepsin L -like p rotease 1 ). The data suggest that PLCPs cleave specific proteins and that their translocation, activation and inhibition of PLCPs are tightly regulated.  相似文献   

8.
A series of secreted proteases are included among the virulence factors documented for Staphylococcus aureus. In light of increasing antibiotic resistance of this dangerous human pathogen, these proteases are considered as suitable targets for the development of novel therapeutic strategies. The recent discovery of staphostatins, endogenous, highly specific, staphylococcal cysteine protease inhibitors, opened a possibility for structure-based design of low molecular weight analogues. Moreover, the crystal structure of staphostatin B revealed a distinct folding pattern and an unexpected, substrate-like binding mode. The solution structure of staphostatin A reported here confirms that staphostatins constitute a novel, distinct class of cysteine protease inhibitors. In addition, the structure knowledge-based mutagenesis studies shed light on individual structural features of staphostatin A, the inhibition mechanism, and the determinants of distinct specificity of staphostatins toward their target proteases.  相似文献   

9.
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.  相似文献   

10.
Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.  相似文献   

11.
The papain family of cysteine cathepsins are actively involved in multiple stages of tumorigenesis. Because elevated cathepsin activity can be found in many types of human cancers, they are promising biomarkers that can be used to target radiological contrast agents for tumor detection. However, currently there are no radiological imaging agents available for these important molecular targets. We report here the development of positron emission tomography (PET) radionuclide-labeled probes that target the cysteine cathepsins by formation of an enzyme activity-dependent bond with the active site cysteine. These probes contain an acyloxymethyl ketone (AOMK) functional group that irreversibly labels the active site cysteine of papain family proteases attached to a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) tag for labeling with (64)Cu for PET imaging studies. We performed biodistribution and microPET imaging studies in nude mice bearing subcutaneous tumors expressing various levels of cysteine cathepsin activity and found that the extent of probe uptake by tumors correlated with overall protease activity as measured by biochemical methods. Furthermore, probe signals could be reduced by pre-treatment with a general cathepsin inhibitor. We also found that inclusion of a Cy5 tag on the probe increased tumor uptake relative to probes lacking this fluorogenic dye. Overall, these results demonstrate that small molecule activity-based probes carrying radio-tracers can be used to image protease activity in living subjects.  相似文献   

12.
Posttranslational modification of proteins with ubiquitin and ubiquitin-like modifiers such as SUMO can be reverted by specific proteases, also referred to as deubiquitinases and isopeptidases, most of which are cysteine-dependent. We have found that the replacement of the conserved C-terminal glycine with propargylamine converts SUMO and ubiquitin to highly efficient covalent inhibitors of their cognate cysteine proteases. Attack of the catalytic cysteine onto the terminal alkyne results in the formation of a vinyl sulfide linkage. Although this reaction is reminiscent of the inhibitory mechanism of the isosteric nitrile inhibitors it was unexpected due to the low electrophilicity of the alkyne group. We show that a precise location of the functional group in the active site of the protease is crucial for the reaction, which was not inhibited by the presence of a radical scavenger. Furthermore, a mutational study of key catalytic residues in the SUMO-protease Senp1, that is H533A and D550A of the catalytic triad and Q597A as part of the oxyanion hole, revealed that these residues are not required for the observed covalent adduct formation. We therefore propose that the reaction is an in situ thiol–alkyne addition. Due to the high chemical inertness of the alkyne moiety the respective protease inhibitors should be well-suited for cellular and therapeutic applications. In keeping with this idea, selective labeling with propargylated SUMO and Ub probes was observed in lysates of cell lines expressing the cognate proteases after transient transfection.  相似文献   

13.
14.
15.
Staphostatins, a novel family of cysteine protease inhibitors with a unique mechanism of action and distinct protein fold has recently been discovered. In this report we describe the properties of Staphylococcus epidermidis staphostatin A (EcpB), a new member of the family. As for other staphostatins, the recombinant S. epidermidis staphostatin A exerted very narrow inhibitory specificity, limited to cysteine protease from the same species. The closely related proteases from S. aureus cleaved the inhibitor at the reactive site peptide bond and inactivated it. The EcpB homologue, S. aureus staphostatin A (ScpB), was also susceptible to proteolytic cleavage at the same site by non-target cysteine proteases. Conversely, S. aureus staphostatin B (SspC) was resistant to such proteolysis. The difference in the susceptibility of individual inhibitors to proteolytic cleavage at the reactive site suggests subtle variations in the mechanism of interaction with cysteine proteases.  相似文献   

16.
An inbreeding line of white clover has been identified which remains non-nodulated under appropriate physiological conditions and so the nitrogen concentration of the plant can be manipulated by altering the nitrate supply to the roots. Non-nodulating plants were used to test the hypothesis that acclimation to nitrogen limitation in white clover involves changes in protease activity and composition. These results indicate that acclimation to nitrogen limitation involves the realignment of constituent proteases without necessarily incurring significant changes in total protease activity. Plants grown at 2.5, 5.0, 7.5, and 10 mM nitrate showed a positive correlation between nitrate supply and foliar protein concentration. Protein profiles, revealed by Coomassie-stained SDS-PAGE, were unchanged between treatments for a given amount of protein. Serine, aspartate/metalloprotease, and two cysteine proteases were identified in the leaves. Although total protease activity per gram fresh weight was unchanged between treatments, the relative contributions of these four proteases was determined by nitrate supply. When plants were stressed further by withholding nitrate there was an increase in cysteine protease activity, but a senescence-related aspartate/metalloprotease was not visible. Hence, while protease expression in white clover leaves responded to the current and past nitrogen status of the plant, the proteases involved in remobilization during nutrient limitation were distinct from those involved during the main senescence period. It is suggested that nitrogen limitation induced an early, reversible stage of senescence in which perturbations in protease activity facilitated the degradation of non-essential proteins in order to increase the chances of plant survival or seed set.  相似文献   

17.
Determining the biological function of newly discovered gene products requires the development of novel functional approaches. To facilitate this task, recent developments in proteomics include small molecular probes that target proteolytic enzyme families including serine, threonine, and cysteine proteases. For the families of ubiquitin (Ub) and ubiquitin-like (UBL)-specific proteases, such tools were lacking until recently. Here, we review the advances made in the development of protein-based active site-directed probes that target proteases specific for ubiquitin and ubiquitin-like proteins. Such probes were applied successfully to discover and characterize novel Ub/UBL-specific proteases. Ub/UBL processing and deconjugation are performed by a diverse set of proteases belonging to several different enzyme families, including members of the ovarian tumor domain (OTU) protease family. A further definition of this family of enzymes will benefit from a directed chemical proteomics approach. Some of the Ub/UBL-specific proteases react with multiple Ub/UBLs and members of the same protease family can recognize multiple Ub/UBLs, underscoring the need for tools that appropriately address enzyme specificity.  相似文献   

18.
Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  相似文献   

19.
A cysteine protease from maize isolated in a complex with cystatin   总被引:5,自引:0,他引:5  
We recently purified a latent but SDS-activated protease complex (40, 15- or 13-kDa proteins) from maize [Yamada et al. (1998) Plant Cell Physiol. 39: 106]. Here, we revealed that the complex was composed of a cysteine protease (40 kDa) and a cystatin, cysteine protease inhibitor (15- or 13-kDa). This is the first report on the isolation of a complex consisting of a cystatin and a target cysteine protease from plants. Cloning of the cysteine protease revealed that it had low homology (25-30%) to other maize cysteine proteases cloned to date but was highly homologous to other plant cysteine proteases such as rice oryzain alpha (84%) and the homologs (50-80%). The cysteine protease expressed in Escherichia coli showed the same substrate and inhibitor specificities as the protease of the complex, demonstrating that the isolated cDNA clone exactly encodes the protease of the complex. The protease expressed in E. coli itself was active but not latent, probably because it was not bound to cystatin. It is most likely that in vitro activation of the protease complex by SDS is caused by the release of bound cystatin. The mRNA of protease was expressed in various tissues except for seeds.  相似文献   

20.
We have generated a series of quenched near-infrared fluorescent activity-based probes (qNIRF-ABPs) that covalently target the papain-family cysteine proteases shown previously to be important in multiple stages of tumorigenesis. These 'smart' probes emit a fluorescent signal only after covalently modifying a specific protease target. After intravenous injection of NIRF-ABPs into mice bearing grafted tumors, noninvasive, whole-body imaging allowed direct monitoring of cathepsin activity. Importantly, the permanent nature of the probes also allowed secondary, ex vivo biochemical profiling to identify specific proteases and to correlate their activity with whole-body images. Finally, we demonstrate that these probes can be used to monitor small-molecule inhibition of protease targets both biochemically and by direct imaging methods. Thus, NIRF-ABPs are (i) potentially valuable new imaging agents for disease diagnosis and (ii) powerful tools for preclinical and clinical testing of small-molecule therapeutic agents in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号