首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
CCL5 is a key in limiting mycobacterial infection. Although NF-κB has been implicated, signaling cascades involved in CCL5 production by epithelial cells following infection with Mycobacterium bovis BCG are still not defined. Here we show that using pharmacological inhibition of sphingosine kinase (SPK), striking inhibition of M. bovis BCG-induced CCL5 protein was observed. Phosphatidylinositol 3-kinase (PI3K) and Akt were also important for CCL5 production by epithelial cells infected with M. bovis BCG. Moreover, there was increased activation of PI3K, IKK/αβ and NF-κB in A549 cells infected with M. bovis BCG. Importantly, the PI3K activation was dependent on SPK. Finally, M. bovis BCG increases the recruitment of p300 with NF-κB in A549 cells. Together, these studies are the first to show that M. bovis BCG-induced CCL5 secretion is dependent on the SPK/PI3K/Akt/NF-κB and p300 signaling pathway. The regulatory pathways of M. bovis BCG-induced CCL5 production can potentially be exploited therapeutically.  相似文献   

4.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

5.
6.
7.
Surfactant protein A (SP-A) regulates a variety of immune cell functions. We determined the ability of SP-A derived from normal and asthmatic subjects to modulate the inflammatory response elicited by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. Fourteen asthmatic and 10 normal control subjects underwent bronchoscopy with airway brushing and bronchoalveolar lavage (BAL). Total SP-A was extracted from BAL. The ratio of SP-A1 to total SP-A (SP-A1/SP-A) and the binding of total SP-A to M. pneumoniae membranes were determined. Airway epithelial cells from subjects were exposed to either normal or asthmatic SP-A before exposure to M. pneumoniae. IL-8 protein and MUC5AC mRNA were measured. Total BAL SP-A concentration did not differ between groups, but the percentage SP-A1 was significantly increased in BAL of asthmatic compared with normal subjects. SP-A1/SP-A significantly correlated with maximum binding of total SP-A to M. pneumoniae, but only in asthma. SP-A derived from asthmatic subjects did not significantly attenuate IL-8 and MUC5AC in the setting of M. pneumoniae infection compared with SP-A derived from normal subjects. We conclude that SP-A derived from asthmatic subjects does not abrogate inflammation effectively, and this dysfunction may be modulated by SP-A1/SP-A.  相似文献   

8.
Fas ligand (FasL) belongs to the TNF family of death ligands, and its binding to the FasR leads to activation of several downstream signaling pathways and proteins, including NF-κB and PI3K/Akt. However, it is not known whether cross-talk exists between NF-κB and PI3K/Akt in the context of FasL signaling. We demonstrate using both human renal epithelial 293T cells and Jurkat T-lymphocyte cells that although FasL activates both Akt and NF-κB, Akt inhibits FasL-dependent NF-κB activity in a reactive oxygen species-dependent manner. Cellular FLICE-inhibitory protein (c-FLIP), an antioxidant and an important component of the death-inducing signaling complex, also represses NF-κB upstream of the regulatory IκB kinase-γ protein subunit in the NF-κB signaling pathway, and positive cross-talk exists between Akt and c-FLIP in the context of inhibition of FasL-induced NF-κB activity. The presence of two death effector domains of c-FLIP and S-nitrosylation of its caspase-like domain were found to be important for mediating c-FLIP-dependent downregulation of NF-κB activity. Taken together, our study reveals a novel link between NF-κB and PI3K/Akt and establishes c-FLIP as an important regulator of FasL-mediated cell death.  相似文献   

9.
BackgroundWhile Syk has been shown to associate with TLR4, the immune consequences of Syk–TLR interactions and related molecular mechanisms are unclear.MethodsGain- and loss-of-function approaches were utilized to determine the regulatory function of Syk and elucidate the related molecular mechanisms in TLR4-mediated inflammatory responses. Cytokine production was measured by ELISA and phosphorylation of signaling molecules determined by Western blotting.ResultsSyk deficiency in murine dendritic cells resulted in the enhancement of LPS-induced IFNβ and IL-10 but suppression of pro-inflammatory cytokines (TNFα, IL-6). Deficiency of Syk enhanced the activity of PI3K and elevated the phosphorylation of PI3K and Akt, which in turn, lead to the phospho-inactivation of the downstream, central gatekeeper of the innate response, GSK3β. Inhibition of PI3K or Akt abrogated the ability of Syk deficiency to enhance IFNβ and IL-10 in Syk deficient cells, confirmed by the overexpression of Akt (Myr–Akt) or constitutively active GSK3β (GSK3 S9A). Moreover, neither inhibition of PI3K–Akt signaling nor neutralization of de novo synthesized IFNβ could rescue TNFα and IL-6 production in LPS-stimulated Syk deficient cells. Syk deficiency resulted in decreased phosphorylation of IKKβ and the NF-κB p65 subunit, further suggesting a divergent influence of Syk on pro- and anti-inflammatory TLR responses.ConclusionsSyk negatively regulates TLR4-mediated production of IFNβ and IL-10 and promotes inflammatory responses in dendritic cells through divergent regulation of downstream PI3K–Akt and NF-κB signaling pathways.General significanceSyk may represent a novel target for manipulating the direction or intensity of the innate response, depending on clinical necessity.  相似文献   

10.
Cheng C  Ho WE  Goh FY  Guan SP  Kong LR  Lai WQ  Leung BP  Wong WS 《PloS one》2011,6(6):e20932

Background

Phosphoinositide 3-kinase (PI3K)/Akt pathway is linked to the development of asthma. Anti-malarial drug artesunate is a semi-synthetic derivative of artemisinin, the principal active component of a medicinal plant Artemisia annua, and has been shown to inhibit PI3K/Akt activity. We hypothesized that artesunate may attenuate allergic asthma via inhibition of the PI3K/Akt signaling pathway.

Methodology/Principal Findings

Female BALB/c mice sensitized and challenged with ovalbumin (OVA) developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Artesunate dose-dependently inhibited OVA-induced increases in total and eosinophil counts, IL-4, IL-5, IL-13 and eotaxin levels in bronchoalveolar lavage fluid. It attenuated OVA-induced lung tissue eosinophilia and airway mucus production, mRNA expression of E-selectin, IL-17, IL-33 and Muc5ac in lung tissues, and airway hyperresponsiveness to methacholine. In normal human bronchial epithelial cells, artesunate blocked epidermal growth factor-induced phosphorylation of Akt and its downstream substrates tuberin, p70S6 kinase and 4E-binding protein 1, and transactivation of NF-κB. Similarly, artesunate blocked the phosphorylation of Akt and its downstream substrates in lung tissues from OVA-challenged mice. Anti-inflammatory effect of artesunate was further confirmed in a house dust mite mouse asthma model.

Conclusion/Significance

Artesunate ameliorates experimental allergic airway inflammation probably via negative regulation of PI3K/Akt pathway and the downstream NF-κB activity. These findings provide a novel therapeutic value for artesunate in the treatment of allergic asthma.  相似文献   

11.
Inducible nitric oxide synthase (iNOS) is known to produce nitric oxide (NO), which is a main contributor to asthmatic airway inflammation. Recent studies have shown that phosphatidylinositol 3-kinase (PI3K) is ubiquitously expressed in airway epithelial cells and its inhibition could relieve airway inflammation and hyperresponsiveness. This study aimed to explore the interaction of PI3K and NO signaling in allergic asthma. We investigated the effects of PI3K inhibitor wortmannin on iNOS expression in bronchiole epithelial cells and NO, IL-4 and IFN-γ levels in lung tissues of asthmatic rat model, which was prepared by 10% OVA solution sensitization and 1% OVA aerosol challenge. Our results showed that the ratio of eosinophils to total cells in BALF, PI3K activity, NO and IL-4 levels in lung tissues was increased after OVA sensitization and challenge, but then was attenuated by the administration of wortmannin. In contrast, IFN-γ level in lung tissues was decreased after OVA sensitization and challenge and increased after the administration of wortmannin. The expression of iNOS protein in bronchiole epithelial cells, iNOS mRNA level and iNOS activity in lung tissues was markedly upregulated after OVA sensitization and challenge, but the upregulation was significantly antagonized by wortmannin. Taken together, these data provide evidence that PI3K functions upstream to modulate iNOS/NO signaling, which then promotes the development of airway inflammation in asthmatic animal model. PI3K inhibitor wortmannin could lead to reduced iNOS expression and NO production, therefore inhibiting airway inflammatory responses.  相似文献   

12.
13.
Interleukin-6 (IL-6) is a multi-effective cytokine involved in multiple immune responses. Whether fibroblasts also turn out to be a cytokine IL-6 factory during interaction with Treponema pallidum is not yet understood. To explore whether fibroblasts participate in inflammation due to syphilis, a series of experiments were performed to explore the role of T. pallidum lipoprotein Tp47 in IL-6 production in human dermal fibroblasts. The Toll-like receptor 2 (TLR2) and participating signalling pathways in this process were also evaluated. The results showed that the expressions of IL-6 and the protein levels of TLR2 in fibroblasts were upregulated after stimulation with Tp47, and this effect was impeded by the TLR2 inhibitor C29. In addition, Tp47 promoted the phosphorylation of p38, PI3K/Akt, and nuclear factor-kappaB (NF-κB), and the translocation of NF-κB in fibroblasts. Moreover, p38, PI3K, and NF-κB inhibitors significantly reduced IL-6 production in fibroblasts stimulated with Tp47. Furthermore, the TLR2 inhibitor C29 inhibited the phosphorylation of p38, Akt, and NF-κB, and the translocation of NF-κB in fibroblasts. In conclusion, our results showed that Tp47 enhanced IL-6 secretion in human dermal fibroblasts through TLR2 via p38, PI3K/Akt, and NF-κB signalling pathways. These findings contribute to our understanding of syphilis inflammation.  相似文献   

14.
Human rhinovirus (HRV) causes the common cold. The most common acute infection in humans, HRV is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease because of its ability to exacerbate airway inflammation by altering epithelial cell biology upon binding to its receptor, ICAM-1. ICAM-1 regulates not only viral entry and replication but also signaling pathways that lead to inflammatory mediator production. We recently demonstrated the Syk tyrosine kinase to be an important mediator of HRV-ICAM-1 signaling: Syk regulates replication-independent p38 MAPK activation and IL-8 expression. In leukocytes, Syk regulates receptor-mediated internalization via PI3K. Although PI3K has been shown to regulate HRV-induced IL-8 expression and clathrin-mediated endocytosis of HRV, the role of airway epithelial Syk in this signaling pathway is not known. We postulated that Syk regulates PI3K activation and HRV endocytosis in the airway epithelium. Using confocal microscopy and immunoprecipitation, we demonstrated recruitment of the normally cytosolic Syk to the plasma membrane upon HRV16-ICAM-1 binding, along with Syk-clathrin coassociation. Subsequent incubation at 37 degrees C to permit internalization revealed redistribution of Syk to punctate structures resembling endosomes and colocalization with HRV16. Internalized HRV was not detected in cells overexpressing the kinase inactive Syk(K396R) mutant, indicating that kinase activity was necessary for endocytosis. HRV-induced PI3K activation was dependent on Syk; Syk knockdown by small interfering RNA significantly decreased phosphorylation of the PI3K substrate Akt. Together, these data reveal Syk to be an important mediator of HRV endocytosis and HRV-induced PI3K activation.  相似文献   

15.
16.
High mobility group box chromosomal protein 1 (HMGB-1) is a widely studied, ubiquitous nuclear protein that is present in eukaryotic cells, and plays a crucial role in inflammatory response. However, the effects of HMGB-1 on human synovial fibroblasts are largely unknown. In this study, we investigated the intracellular signaling pathway involved in HMGB-1-induced IL-6 production in human synovial fibroblast cells. HMGB-1 caused concentration- and time-dependent increases in IL-6 production. HMGB-1-mediated IL-6 production was attenuated by receptor for advanced glycation end products (RAGE) monoclonal antibody (Ab) or siRNA. Pretreatment with c-Src inhibitor (PP2), Akt inhibitor and NF-κB inhibitor (pyrrolidine dithiocarbamate and L-1-tosylamido-2-phenylenylethyl chloromethyl ketone) also inhibited the potentiating action of HMGB-1. Stimulation of cells with HMGB-1 increased the c-Src and Akt phosphorylation. HMGB-1 increased the accumulation of p-p65 in the nucleus, as well as NF-κB luciferase activity. HMGB-1-mediated increase of NF-κB luciferase activity was inhibited by RAGE Ab, PP2 and Akt inhibitor or RAGE siRNA, or c-Src and Akt mutant. Our results suggest that HMGB-1-increased IL-6 production in human synovial fibroblasts via the RAGE receptor, c-Src, Akt, p65, and NF-κB signaling pathways.  相似文献   

17.
18.
Cao J  Ren G  Gong Y  Dong S  Yin Y  Zhang L 《Cytokine》2011,56(3):823-831
Although mast cells have been found in increased numbers in bronchial epithelium in asthma patients, the pathogenic role of the interaction of mast cells with bronchial epithelial cells in the development of local inflammation in asthma is not well understood. In this study, primary human bronchial epithelial cells and a human mast cell line (HMC-1) were cultured either together or separately in the presence or absence of various signaling molecule inhibitors or dexamethasone. Cytokine IL-6, and chemokines including CXCL1 and CXCL8 in cell culture supernatant were assayed by enzyme-linked immunosorbent assay (ELISA), and the activity of mitogen-activated protein kinases (MAPKs), or nuclear factor-κB (NF-κB) in co-culture system was analyzed by ELISA. Co-culture of bronchial epithelial cells and mast cells induced a significant elevation of IL-6, CXCL1 and CXCL8 in bronchial epithelial cells, and both IL-17A and IL-17F could further enhance the release of these inflammatory mediators from co-culture. The induction of IL-6, CXCL1 and CXCL8 upon the interaction of bronchial epithelial cells with mast cells was mediated by MAPKs and NF-κB signaling pathways. These data indicate that the interaction of mast cells with bronchial epithelial cells may represent a crucial mechanism of regulating local inflammatory response in allergic asthma.  相似文献   

19.
20.
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased IFN-γ production in cultured epithelial cells after exposure to house dust mite extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1 deficiency negatively regulates allergen-induced airway inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号