首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨激动乙醛脱氢酶2(ALDH2)在糖尿病大鼠心肌损伤中的作用。方法:腹腔注射55 mg/kg链脲佐菌素复制糖尿病大鼠模型,分为糖尿病组和乙醇+糖尿病组(n=8)。8周后行离体心肌缺血/再灌注(I/R),测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量。测定空腹血糖、糖化血红蛋白(HbA1c)水平。RT-PCR和Western blot测定左心室前壁心尖组织线粒体ALDH2 mRNA和蛋白表达。结果:与正常大鼠心肌I/R相比,糖尿病大鼠左室发展压、左心室最大上升和下降速率、左室做功进一步下降,左室舒张末压抬高,复灌期冠脉流出液中LDH释放增多,心室ALDH2 mRNA和蛋白表达降低;与糖尿病大鼠心肌I/R相比,ALDH2激动剂乙醇明显促进左室发展压、左心室最大上升和下降速率、左室做功的恢复,降低左室舒张末压,同时降低HbA1c水平和LDH的释放,ALDH2 mRNA和蛋白表达增高。结论:糖尿病大鼠心肌缺血/再灌注时,心肌ALDH2表达降低;增强ALDH2在糖尿病大鼠心肌中的表达可发挥保护作用。  相似文献   

2.
3.
Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR) injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20–80 mg/kg/day, p.o.) or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dt max (inotropic state), -LVdP/dt max (lusitropic state) and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO) bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB), endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase) and lipid peroxidation levels. Thus, naringin restored IR injury by preserving myocardial structural integrity and regulating Hsp27, Hsp70, p-eNOS/p-Akt/p-ERK signaling and inflammatory response.  相似文献   

4.
Yang W  Li H  Luo H  Luo W 《Life sciences》2011,88(7-8):302-306
AimsThis study tested the hypothesis that the inhibition of semicarbazide-sensitive amine oxidase (SSAO) after ischemia could attenuate myocardial ischemia–reperfusion (I/R) injury.Main methodsAnesthetized male Sprague–Dawley rats underwent myocardial I/R injury. Saline, semicarbazide (SCZ, 30 mg/kg), hydralazine (HYD, 10 mg/kg), or LJP 1207 (30 mg/kg) was administered intraperitoneally 3 min before reperfusion. After 30 min of ischemia and 180 min of reperfusion, the myocardial infarct size was determined using nitroblue tetrazolium staining. Myocardial myeloperoxidase activity was determined through biochemical assay. HE staining was used for histopathological evaluation. Myocardial SSAO activity was assayed with high performance liquid chromatography analysis. Additionally, the endothelial expression of P-selectin was evaluated using immunohistochemistry after 30 min of ischemia and 20 min of reperfusion.Key findingsMyocardial SSAO activity was increased in myocardial I/R injury. Administration of SCZ, HYD, or LJP 1207 reduced the myocardial infarct size and decreased leukocyte infiltration and endothelial P-selectin expression in myocardial I/R injury in vivo.SignificanceThese data suggest that myocardial I/R injury up-regulates myocardial SSAO activity, and the inhibition of SSAO prior to reperfusion is able to attenuate acute myocardial I/R injury.  相似文献   

5.
Gu SS  Shi N  Wu MP 《Life sciences》2007,81(9):702-709
It is well established that reperfusion of heart is the optimal method for salvaging ischemic myocardium, however, the success of this therapy could be limited by reperfusion injury, which is involved in inflammatory responses. High density lipoprotein (HDL) has an anti-inflammatory function and can protect the heart from ischemia-reperfusion (I/R) injury. In this study, we investigated the cardioprotective role of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, in I/R injury. Using rats subjected to myocardial I/R by ligation of left anterior descending coronary artery (LAD), we found that administration of ApoA-I (20 mg/kg, iv) before the onset of reperfusion of myocardial infarction can significantly reduce serum creatine kinase (CK) levels (62.1+/-13.8%, p<0.01) and heart TNF-alpha as well as IL-6 levels, compared with saline controls (40.4+/-14.7%, 44+/-9.8%, p<0.01 respectively). Moreover, ApoA-I treatment suppresses the expression of ICAM-1 on endothelium, thus diminishing neutrophil adherence, transendothelial migration, and the subsequent myocyte injury. We concluded that ApoA-I could effectively protect rat heart from I/R injury.  相似文献   

6.
BackgroundNLRP3 inflammasome activation and pyroptosis play an important role in myocardial ischemia/reperfusion injury (MI/RI). Cinnamomi ramulus (CR), is an important folk medicinal plant in China, which derived from the dried twig of Cinnamomum cassia (L.) Presl, has function of “warming and tonifying heart yang”, and traditionally utilized to treat the cold, blood-cold amenorrhea, phlegm, edema, arthralgia, and palpitations as well as improve blood circulation. The aqueous extract of C. ramulus was reported to show significant therapeutic potential for treating MI/RI. Whereas, there are no previous investigations in China or abroad has reported the cardioprotective effects and underlying mechanism of the ethyl acetate extract of C. ramulus (CREAE) and its bioactive substance cinnamic acid (CA) in triggering NLRP3 inflammasome activation and subsequent pyroptosis.PurposeThe present study aimed to assess the cardioprotective function of CREAE and CA against the MI/RI in rats and involved the underlying mechanisms.MethodsThe MI/RI model was established in male SD rats by occlusion of the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min, respectively. The rats were intragastrically administered with CREAE (74 and 37 mg/kg) and CA (45 mg/kg) for 7 successive days before vascular ligation. The cardioprotective effects of CREAE and CA against myocardial injury of rats were detected by HE staining, TTC staining, echocardiograms, and myocardial enzymes detections. Serum levels of inflammatory factors, such as IL-6, IL-1β, and TNF-α, were analyzed by ELISA kits to evaluate the effects of CREAE and CA. The protein and gene expression levels of NLRP3 and the pyroptosis-related factors in heart tissue were conducted by western blot and RT-qPCR.ResultsOur results showed that CREAE and CA decrease myocardial infarct size and improve cardiac function, mitigate myocardial damage, and repress inflammatory response in rats after I/R. Mechanistically, our results revealed that CREAE and CA can dramatically suppress the activation of NLRP3 inflammasome and subsequent cardiomyocyte pyroptosis in myocardial tissues that as evidenced by downregulating the protein and gene expressions of NLRP3, ASC, IL-1β, caspase-1, gasdermin D, and N-terminal GSDMD.ConclusionsOur data indicated that CREAE and CA may attenuate MI/RI through suppression of NLRP3 inflammasome and subsequent pyroptosis-related signaling pathways.  相似文献   

7.

Aim

SB-710411 is a rat selective urotensin-II (U-II) receptor antagonist, which can block U-II-induced contraction of the aorta and inhibit U-II-induced myocardial fibrosis in rats. However, the effect of SB-710411 on myocardial ischemia-reperfusion (I/R) injury is unclear. The present study was designed to investigate whether SB-710411 has a protective effect on myocardial I/R injury in rats and the possible mechanisms.

Methods and Results

Myocardial I/R injury was induced by occluding the left anterior descending coronary artery in adult male Sprague-Dawley rats. Hemodynamic parameters, electrocardiogram (ECG), infarct size, histological alteration, lactate dehydrogenase (LDH), creatine phosphokinase-MB (CK-MB), cardiac troponin I (cTnI), RhoA, and the protein expressions of U-II receptor (UTR), ROCK1 and ROCK2 were evaluated. Cardiac I/R injury significantly up-regulated the expressions of UTR, ROCK1 and ROCK2 proteins in rat myocardium. SB-710411 1.0 and 2.0 μg/kg significantly reduced cardiac I/R-induced the infarct size and histological damage in rat myocardium, markedly inhibited the changes of hemodynamic parameters and the increases of ST-segment in ECG, the serum LDH and CK-MB activities and cTnI level in rats subjected to myocardial I/R injury. Furthermore, SB-710411 obviously prevented myocardial I/R-increased RhoA activity and UTR, ROCK1 and ROCK2 protein expressions.

Conclusions

Our results indicate that cardiac I/R injury increases myocardial UTR expression, and SB-710411 has a potent protective effect on myocardial I/R injury in rats. The cardioprotection may be associated with the inhibition of UTR-RhoA/ROCK pathway.  相似文献   

8.
The present study was designed to investigate whether Araloside C, one of the major triterpenoid compounds isolated from Aralia elata known to be cardioprotective, can improve heart function following ischaemia/reperfusion (I/R) injury and elucidate its underlying mechanisms. We observed that Araloside C concentration‐dependently improved cardiac function and depressed oxidative stress induced by I/R. Similar protection was confirmed in isolated cardiomyocytes characterized by maintaining Ca2+ transients and cell shortening against I/R. Moreover, the potential targets of Araloside C were predicted using the DDI‐CPI server and Discovery Studio software. Molecular docking analysis revealed that Araloside C could be stably docked into the ATP/ADP‐binding domain of the heat shock protein 90 (Hsp90) protein via the formation of hydrogen bonds. The binding affinity of Hsp90 to Araloside C was detected using nanopore optical interferometry and yielded KD values of 29 μM. Araloside C also up‐regulated the expression levels of Hsp90 and improved cell viability in hypoxia/reoxygenation‐treated H9c2 cardiomyocytes, whereas the addition of 17‐AAG, a pharmacologic inhibitor of Hsp90, attenuated Araloside C‐induced cardioprotective effect. These findings reveal that Araloside C can efficiently attenuate myocardial I/R injury by reducing I/R‐induced oxidative stress and [Ca2+]i overload, which was possibly related to its binding to the Hsp90 protein.  相似文献   

9.
Vagal nerve stimulation has been suggested to ameliorate left ventricular (LV) remodeling in heart failure. However, it is not known whether and to what degree vagal nerve stimulation affects matrix metalloproteinase (MMP) and tissue inhibitor of MMP (TIMP) in myocardium, which are known to play crucial roles in LV remodeling. We therefore investigated the effects of electrical stimulation of efferent vagal nerve on myocardial expression and activation of MMPs and TIMPs in a rabbit model of myocardial ischemia-reperfusion (I/R) injury. Anesthetized rabbits were subjected to 60 min of left coronary artery occlusion and 180 min of reperfusion with (I/R-VS, n = 8) or without vagal nerve stimulation (I/R, n = 7). Rabbits not subjected to coronary occlusion with (VS, n = 7) or without vagal stimulation (sham, n = 7) were used as controls. Total MMP-9 protein increased significantly after left coronary artery occlusion in I/R-VS and I/R to a similar degree compared with VS and sham values. Endogenous active MMP-9 protein level was significantly lower in I/R-VS compared with I/R. TIMP-1 mRNA expression was significantly increased in I/R-VS compared with the I/R, VS, and sham groups. TIMP-1 protein was significantly increased in I/R-VS and VS compared with the I/R and sham groups. Cardiac microdialysis technique demonstrated that topical perfusion of acetylcholine increased dialysate TIMP-1 protein level, which was suppressed by coperfusion of atropine. Immunohistochemistry demonstrated a strong expression of TIMP-1 protein in cardiomyocytes around the dialysis probe used to perfuse acetylcholine. In conclusion, in a rabbit model of myocardial I/R injury, vagal nerve stimulation induced TIMP-1 expression in cardiomyocytes and reduced active MMP-9.  相似文献   

10.
Ischemia-reperfusion (I/R) is thought to upregulate the expression and activity of matrix metalloproteinases (MMPs), which regulate myocardial and vascular remodeling. Previous studies have shown that transforming growth factor-beta(1) (TGF-beta(1)) can attenuate myocardial injury induced by I/R. TGF-beta(1) is also reported to suppress the release of MMPs. To study the modulation of MMP-1 by TGF-beta(1) in I/R myocardium, Sprague-Dawley rats were given saline and subjected to 1 h of myocardial ischemia [total left coronary artery (LCA) ligation] followed by 1 h of reperfusion (n = 9). Parallel groups of rats were pretreated with recombinant TGF-beta(1) (rTGF-beta(1), 1 mg/rat, n = 9) before reperfusion or exposure to sham I/R (control group). I/R caused myocardial necrosis and dysfunction, indicated by decreased first derivative of left ventricular pressure, mean arterial blood pressure, and heart rate (all P < 0.01 vs. sham-operated control group). Simultaneously, I/R upregulated MMP-1 (P < 0.01). Treatment of rats with rTGF-beta(1) reduced the extent of myocardial necrosis and dysfunction despite I/R (all P < 0.01). rTGF-beta(1) treatment also inhibited the upregulation of MMP-1 in the I/R myocardium (P < 0.05). To determine the direct effect of MMP-1 on the myocardium, isolated adult rat myocytes were treated with active MMP-1, which caused injury and death of cultured myocytes, measured as lactate dehydrogenase release and trypan blue staining, in a dose- and time-dependent manner (P < 0.05). Pretreatment with PD-166793, a specific MMP inhibitor, attenuated myocardial injury and death induced by active MMP-1. The present study for the first time shows that MMP-1 can directly cause myocyte injury or death and that attenuation of myocardial I/R injury by TGF-beta(1) may, at least partly, be mediated by the inhibition of upregulation of MMP-1.  相似文献   

11.
BackgroundIschaemic preconditioning elicited by brief periods of coronary occlusion and reperfusion protects the heart from a subsequent prolonged ischaemic insult. Here, we test the hypothesis that short‐term non‐ischaemic stimulation of hypertrophy renders the heart resistant to subsequent ischaemic injury.Methods and ResultsTransient transverse aortic constriction (TAC) was performed for 3 days in mice and then withdrawn for 4 days by aortic debanding, followed by subsequent exposure to myocardial ischaemia‐reperfusion (I/R) injury. Following I/R injury, myocardial infarct size and apoptosis were significantly decreased, and cardiac dysfunction was markedly improved in the TAC preconditioning group compared with the control group. Mechanistically, TAC preconditioning markedly suppressed I/R‐induced autophagy and preserved autophagic flux by deacetylating SOD2 via a SIRT3‐dependent mechanism. Moreover, treatment with an adenovirus encoding SIRT3 partially mimicked the effects of hypertrophic preconditioning, whereas genetic ablation of SIRT3 in mice blocked the cardioprotective effects of hypertrophic preconditioning. Furthermore, in vivo lentiviral‐mediated knockdown of Beclin 1 in the myocardium ameliorated the I/R‐induced impairment of autophagic flux and was associated with a reduction in cell death, whereas treatment with a lentivirus encoding Beclin 1 abolished the cardioprotective effect of TAC preconditioning.ConclusionsThe present study identifies TAC preconditioning as a novel strategy for induction of an endogenous self‐defensive and cardioprotective mechanism against cardiac injury. Specifically, TAC preconditioning reduced myocardial autophagic cell death in a SIRT3/SOD2 pathway‐dependent manner.  相似文献   

12.
AimsWe tested the hypothesis that daidzein may reduce myocardial damage by both inhibiting the release of cytokines and limiting the nuclear translocation of NF-kB.Main methodsMale Sprague–Dawley rats were anesthetized, and the left anterior descending coronary artery (LAD) was ligated for 25 min. Twenty-four hours after reperfusion was established, the hemodynamics and infarct size were examined.Key findingsTreatment with daidzein (10 mg/kg, i.p.) 1 h prior to the ischemia/reperfusion procedure (I/R) reduced the infarct size by 52.8% (P < 0.05). Daidzein also significantly improved I/R-induced myocardial contractile dysfunction by improving the left ventricular diastolic pressure and the positive and negative maximal values of the first derivative of the left ventricular pressure. In addition, daidzein reduced the plasma levels of TNF-α and IL-6 in I/R rats and decreased malondialdehyde levels, myeloperoxidase activity, catalase activity and neutrophil infiltration in I/R rat myocardium. Interestingly, daidzein inhibited I/R-induced myocardial apoptosis by decreasing DNA strand breaks and cleaved caspase-3 activity. Furthermore, daidzein inhibited both the nuclear translocation of NF-kB in I/R rat hearts and the H2O2-induced activation of NF-kB-luciferase activity in human umbilical vein endothelial cells.SignificanceThis study reveals that the administration of daidzein in vivo attenuates I/R-induced myocardial damage via inhibition of NF-kB activation, which in turn may suppress inflammatory cytokine expression.  相似文献   

13.
目的:探讨缺血后处理对心肌缺血再灌注致脑损伤中炎症因子及胶质纤维酸性蛋白的影响。方法:24只雄性SD大鼠随机分为3组(n=8),假手术组(Sham)、心肌缺血/再灌注组(IR)、后处理组(IPost)。结扎大鼠冠状动脉左前降支30 min,复流120 min建立大鼠心肌缺血/再灌注模型。后处理组于再灌注前进行缺血后处理,再灌注10 s,缺血10 s,共3次。断头处死大鼠取脑组织,光镜下观察病理学结果,Western blot检测炎性因子IL-6、IL-8、IL-10,免疫组化法检测GFAP。结果:与Sham组相比较,IR组脑组织炎症因子IL-6,IL-8表达增加,IL-10下降(P0.01),而后处理可以降低脑组织中IL-6,IL-8的表达,增加IL-10的表达(P0.01);与Sham组相比较,IR组脑组织GFAP表达增多(P0.05),而后处理可以显著增加脑组织中GFAP的表达(P0.01)。结论:心肌缺血后处理可以减少脑组织中炎症因子的表达,增加GFAP的表达,从而起到脑保护作用。  相似文献   

14.

Aims

Our previous studies demonstrated that remote electro-stimulation (RES) increased myocardial GSK3 phosphorylation and attenuated ischemia/ reperfusion (I/R) injury in rat hearts. However, the role of various opioid receptors (OR) subtypes in preconditioned RES-induced myocardial protection remains unknown. We investigated the role of OR subtype signaling in RES-induced cardioprotection against I/R injury of the rat heart.

Methods & Results

Male Spraque-Dawley rats were used. RES was performed on median nerves area with/without pretreatment with various receptors antagonists such as opioid receptor (OR) subtype receptors (KOR, DOR, and MOR). The expressions of Akt, GSK3, and PKCε expression were analyzed by Western blotting. When RES was preconditioned before the I/R model, the rat''s hemodynamic index, infarction size, mortality and serum CK-MB were evaluated. Our results showed that Akt, GSK3 and PKCε expression levels were significantly increased in the RES group compared to the sham group, which were blocked by pretreatment with specific antagonists targeting KOR and DOR, but not MOR subtype. Using the I/R model, the duration of arrhythmia and infarct size were both significantly attenuated in RES group. The mortality rates of the sham RES group, the RES group, RES group + KOR antagonist, RES group + DOR/MOR antagonists (KOR left), RES group + DOR antagonist, and RES group + KOR/MOR antagonists (DOR left) were 50%, 20%, 67%, 13%, 50% and 55%, respectively.

Conclusion

The mechanism of RES-induced myocardial protection against I/R injury seems to involve multiple target pathways such as Akt, KOR and/or DOR signaling.  相似文献   

15.
摘要 目的:探讨白藜芦醇后处理对大鼠脑缺血再灌注损伤Bax、Bcl-2表达的影响。方法:清洁级雄性SD大鼠60只随机分为假手术组(n=12)、I/R组(n=12)、白藜芦醇组(n=36),白藜芦醇组按不同剂量分为低剂量、中剂量、高剂量组(10 mg/kg、20 mg/kg、40 mg/kg),每组12只。假手术组:仅暴露大鼠颈外动脉,不做缺血处理;I/R组:采用改良线栓法制备大鼠大脑中动脉缺血再灌注损伤模型(缺血2 h,再灌注24 h);白藜芦醇组:造模方法同I/R组,在大鼠缺血2h后,将不同剂量白藜芦醇腹腔注射入大鼠体内,比较各组SD大鼠神经功能缺损评分、采用Western blotting法、免疫组化法对大鼠脑组织缺血侧海马CA1区Bax和Bcl-2表达进行比较。结果:白藜芦醇低、中、高剂量组神经功能缺损评分均低于I/R组,随着白藜芦醇剂量的增加,神经功能缺损评分逐渐降低,其中白藜芦醇高剂量组神经功能缺损评分降低最为明显;白藜芦醇组与I/R组相比,不同剂量白藜芦醇组Bax表达逐渐减少,而Bcl-2表达明显增加,其中以白藜芦醇高剂量组改变最为明显。结论:高剂量白藜芦醇可以降低大鼠神经功能缺损评分,减轻脑缺血再灌注损伤,对大鼠脑缺血再灌注损伤具有保护作用,其机制与Bax、Bcl-2的表达有关。  相似文献   

16.
Glucocorticoid regulates angiotensin II receptor (ATR) expression via activating glucocorticoid receptors and binding to glucocorticoid response elements. The regulation of ATR by glucocorticoids in the context of myocardial injury from ischemia/reperfusion (I/R) is yet to be elucidated. The present study determined the role of ATR in glucocorticoid-induced cardiac protection. Adult male rats were administered once a day i.p. 1 mg/kg/day dexamethasone or dexamethasone plus 10 mg/kg/day RU486 for 5 days. Hearts were then isolated and subjected to I/R injury in a Langendorff preparation. Dexamethasone treatment significantly decreased I/R injury and improved post-ischemic recovery of cardiac function. Dexamethasone increased glucocorticoid receptor binding to glucocorticoid response elements at AT1aR and AT2R promoters, resulting in a significant increase in expression of AT1R protein but a decrease in AT2R expression in the heart. In addition, dexamethasone treatment significantly increased PKCε expression and p-PKCε protein abundance. These dexamethasone-mediated effects were blocked by RU486. More importantly, blockade of AT1R and AT2R with losartan and PD123319 abrogated dexamethasone-induced protection of the heart from I/R injury. The results indicate that glucocorticoid promotes a cardioprotective phenotype associated with the upregulation of AT1R and PKCε and downregulation of AT2R in the heart.  相似文献   

17.
《Biomarkers》2013,18(6-7):453-459
Abstract

We demonstrated that urinary heat shock protein of 72 KDa (Hsp72) is a sensitive biomarker for the early detection of acute kidney injury (AKI). However, whether Hsp72 induction during an AKI episode is kidney-specific is unknown, as well as, the degree of Hsp72 stability in urine samples. In rats that underwent bilateral renal ischemia and reperfusion (I/R), Hsp72 levels were evaluated in several tissues and in collected urines under different storage and temperature conditions, as well as in variable numbers of freeze-thaw cycles. The effect of room temperature and five freeze-thaw cycles on urinary Hsp72 levels was also evaluated in urine samples from AKI patients. We found that Hsp72 increased exclusively in the renal cortex of I/R group, emphasizing its performance as an AKI biomarker. Urinary-Hsp72 remained constant at room temperature (48 h), during 9 months of storage and was not affected by five freeze/thaw cycles.  相似文献   

18.
Sun D  Huang J  Zhang Z  Gao H  Li J  Shen M  Cao F  Wang H 《PloS one》2012,7(3):e33491

Background

The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury.

Methodology/Principal Findings

Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin.

Conclusions/Significance

This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2.  相似文献   

19.
A recently identified lectin-like oxidized low-density lipoprotein receptor (LOX-1) mediates endothelial cell injury and facilitates inflammatory cell adhesion. We studied the role of LOX-1 in myocardial ischemia-reperfusion (I/R) injury. Anesthetized Sprague-Dawley rats were subjected to 60 min of left coronary artery (LCA) ligation, followed by 60 min of reperfusion. Rats were treated with saline, LOX-1 blocking antibody JXT21 (10 mg/kg), or nonspecific anti-goat IgG (10 mg/kg) before I/R. Ten other rats underwent surgery without LCA ligation and served as a sham control group. LOX-1 expression was markedly increased during I/R (P < 0.01 vs. sham control group). Simultaneously, the expression of matrix metalloproteinase-1 (MMP-1) and adhesion molecules (P-selectin, VCAM-1, and ICAM-1) was also increased in the I/R area (P < 0.01 vs. sham control group). There was intense leukocyte accumulation in the I/R area in the saline-treated group. Treatment of rats with the LOX-1 antibody prevented I/R-induced upregulation of LOX-1 and reduced MMP-1 and adhesion molecule expression as well as leukocyte recruitment. LOX-1 antibody, but not nonspecific IgG, also reduced myocardial infarct size (P < 0.01 vs. saline-treated I/R group). To explore the link between LOX-1 and adhesion molecule expression, we measured expression of oxidative stress-sensitive p38 mitogen-activated protein kinase (p38 MAPK). The activity of p38 MAPK was increased during I/R (P < 0.01 vs. sham control), and use of LOX-1 antibody inhibited p38 MAPK activation (P < 0.01). These findings indicate that myocardial I/R upregulates LOX-1 expression, which through p38 MAPK activation increases the expression of MMP-1 and adhesion molecules. Inhibition of LOX-1 exerts an important protective effect against myocardial I/R injury.  相似文献   

20.
Cornuside is a secoiridoid glucoside isolated from the fruit of Cornus officinalis SIEB. et ZUCC. In this study, we investigated the anti-myocardial ischemia and reperfusion (I/R) injury effects of cornuside in vivo and elucidated the potential mechanism. Rat models of myocardial I/R were induced by coronary occlusion followed by reperfusion or by Isoproterenol (ISO), treatment of rats with cornuside (20 and 40 mg/kg, i.v.) protected the animals from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics and reduction of myocardial damage severity. Treatment with cornuside also attenuated polymorphonuclear leukocytes (PMNs) infiltration, decreased myeloperoxidase (MPO) activity in the heart, lowered serum levels of pro-inflammatory factors and reduced phosphorylated IκB-α and nuclear factor kappa B (NF-κB) levels in the heart. Additionally, cornuside was shown to have remarkable antioxidant activity and inhibited ISO-induced myocardial cell necrosis. Thus, cornuside appeared to protect the rat from myocardial I/R injury by acting as an anti-inflammatory agent. These findings suggested that cornuside may be used therapeutically in the setting of myocardial I/R where inflammation and oxidant injury are prominent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号