首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new anchor system based on the ice nucleation protein (InaV) from Pseudomonas syringae INA5 was developed for cell surface display of functional organophosphorus hydrolase (OPH). The activity and stability of cells expressing the truncated InaV (INPNC)-OPH fusions were compared to cells with surface-expressed OPH using two other fusion anchors based on Lpp-OmpA and the truncated InaK protein. Whole cell activity was as much as 5-fold higher using the InaV anchor. Majority of the OPH activity was located on the cell surface as determined by protease accessibility and cell fractionation experiments. The surface localization of OPH was further verified by immunofluorescence microscopy. Constitutive expression of OPH on the surface using the InaV anchor resulted in no cell lysis or growth inhibition, in contrast to the Lpp-OmpA anchor. Suspended cultures also exhibited good stability, retaining almost 100% activity over a period of 3 weeks. Therefore, the InaV anchor system offers an attractive alternative to the currently available surface anchors, providing high-level expression and superior stability.  相似文献   

2.
We investigated the ability of the N-terminal domain of InaK, an ice nucleation protein from Pseudomonas syringae KCTC1832, to act as an anchoring motif for the display of foreign proteins on the Escherichia coli cell surface. Total expression level and surface display efficiency of green fluorescent protein (GFP) was compared following their fusion with either the N-terminal domain of InaK (InaK-N), or with the known truncated InaK containing both N- and C-terminal domains (InaK-NC). We report that the InaK-N/GFP fusion protein showed a similar cell surface display efficiency ( approximately 50%) as InaK-NC/GFP, demonstrating that the InaK N-terminal region alone can direct translocation of foreign proteins to the cell surface and can be employed as a potential cell surface display motif. Moreover, InaK-N/GFP showed the highest levels of total expression and surface display based on unit cell density. InaK-N was also successful in directing cell surface display of organophosphorus hydrolase (OPH), confirming its ability to act as a display motif.  相似文献   

3.
A new system for cell surface display of recombinant proteins on Escherichia coli was tested for expression of the ecto domain of CD8, which is the surface protein of human T cytotoxic lymphocytes. Immunofluorescence microscopy, ELISA, and immunodot blotting confirmed successful expression of the CD8 ecto domain fused to ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. © Rapid Science Ltd. 1998  相似文献   

4.
陶站华  张搏 《微生物学通报》2012,39(3):0318-0325
【目的】利用细胞表面工程技术将活性脂肪酶展示于大肠杆菌细胞表面并对展示脂肪酶的酶学性质进行研究。【方法】将丁香假单胞菌冰核蛋白N末端结构域序列与粘质沙雷氏菌脂肪酶编码基因融合,构建成脂肪酶表面展示载体,并转化大肠杆菌BL21(DE3)。【结果】重组菌以终浓度0.05 mmol/L异丙基硫代-D-半乳糖苷(IPTG)、25°C条件下诱导培养,16 h后表面展示脂肪酶活力达到最大值1 852 U/g细胞干重。表面展示酶的最适pH为9.0,最适反应温度为40°C,表面展示酶热稳定性较游离酶有较大提高,在40°C孵育1 h后仍能保持90%以上的酶活力。【结论】以上结果表明细菌表面展示技术为脂肪酶固定提供了一个很有前景的替代方法。  相似文献   

5.
Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
The gene encoding organophosphorus hydrolase (OPH) from Flavobacterium species was expressed on the cell surface of Saccharomyces cerevisiae MT8-1 using a glycosylphosphatidylinositol (GPI) anchor linked to the C-terminal region of OPH. Immunofluorescence microscopy confirmed the localization of OPH on the cell surface, and fluorescence intensity measurement of cells revealed that 1.4 x 10(4) molecules of OPH per cell were displayed. Seventy percent of OPH whole-cell activity was detected on the cell surface by protease accessibility assay. The activity of OPH was highly dependent on cell growth conditions. The maximum activity was obtained when cells were grown in a synthetic dextrose medium lacking tryptophan (SD-W) buffered by 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES, 200 mM, pH 7.0) at 20 degrees C, and cobalt chloride was added at 0.1 mM. S. cerevisiae MT8-1 displaying OPH which exhibited a higher activity than Escherichia coli displaying OPH using the ice nucleation protein (INP) anchor. The use of S. cerevisiae MT8-1, which has a "generally regarded as safe (GRAS)" status, as a host for the easy expression of the OPH gene provides a new biocatalyst useful for simultaneous detoxification and detection of organophosphorus pesticides.  相似文献   

6.
A surface anchoring motif using the ice nucleation protein (INP) of Xanthomonas campestris pv. campestris BCRC 12,846 for display of transglucosidase has been developed. The transglucosidase gene from Xanthomonas campestris pv. campestris BCRC 12,608 was fused to the truncated ina gene. This truncated INP consisting of N- and C-terminal domains (INPNC) was able to direct the expressed transglucosidase fusion protein to the cell surface of E. coli with apparent high enzymatic activity. The localization of the truncated INPNC-transglucosidase fusion protein was examined by Western blot analysis and immunofluorescence labeling, and by whole-cell enzyme activity in the glucosylation of hydroquinone. The glucosylation reaction was carried out at 40 degrees C for 1 h, which gave 23 g/L of alpha-arbutin, and the molar conversion based on the amount of hydroquinone reached 83%. The use of whole-cells of the wild type strain resulted in an alpha-arbutin concentration of 4 g/L and a molar conversion of 16% only under the same conditions. The results suggested that E. coli displaying transglucosidase using truncated INPNC as an anchoring motif can be employed as a whole-cell biocatalyst in glucosylation.  相似文献   

7.
A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection. Due to its ubiquitous ability to invade host cells, Salmonella typhimurium might be a good candidate for displaying viral antigens. We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S. typhimurium BRD509 using the ice nucleation protein. The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated. The results showed that display motifs in the protein can target integral foreign protein on the surface of S. typhimurium BRD509. Moreover, recombinant strains with surface displayed viral proteins retained their invasiveness, suggesting that the recombinant S. typhimurium can be used as live vaccine vector for eliciting complete immunogenicity. The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.  相似文献   

8.
The gene encoding chitinase 92 (Chi92) from Aeromonas hydrophila JP10 has been displayed on the cell surface of Escherichia coli using the N-terminal region of ice nucleation proteins (INPN) as an anchoring motif. Immunofluorescence microscopy confirmed that Chi92 was anchored on the cell surface. Western blot analysis further identified the synthesis of INP derivatives containing the N-terminal domain INPN-Chi92 fusion protein of the expected size (112 kDa). Whole cell enzyme assay indicated that the displayed Chi92 showed enhanced catalytic activity toward colloidal chitin. In addition, the Chi92-displayed cells exhibited inhibitory effects on the mycelial growth of phytopathogenic fungi, including Fusarium decemcellulare, Sclerotium rolfsii, Rhizoctonia solani kuhn, and Fusarium oxysporum f.sp. melonis. This study suggested that the INP-based display systems can be used to express a large protein (90 kDa Chi92) on the cell surface of E. coli without growth inhibition. In addition, the display of chitinase on the cell surface may provide an attractive method for the development of biocontrol agents against phytopathogenic fungi.  相似文献   

9.
A surface anchor system derived from the ice-nucleation protein (INP) from Pseudomonas syringe was used to localize organophosphorus hydrolase (OPH) onto the surface of Pseudomonas putida KT2440. Cells harboring the shuttle vector pPNCO33 coding for the INP-OPH fusion were capable of targeting OPH onto the cell surface as demonstrated by whole cell ELISA. The whole cell activity of P. putida KT2440 was shown to be 10 times higher than those of previous efforts expressing the same fusion protein in Escherichia coli. The capability of expressing enzymes on the surface of a robust and environmentally benign P. putida KT2440 should open up new avenues for a wide range of applications such as in situ bioremediation.  相似文献   

10.
Cell surface display on Escherichia coli using ice nucleation protein was performed in order to develop a new expression system for recombinant eukaryotic proteins. Salmobin, the thrombin-like enzyme obtained from Korean snake (Agkistrodon halys) venom was displayed on the surface of Escherichia coli fused to the C-terminus of the ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. The thrombin cleavage site was inserted between salmobin and INP. The presence of salmobin on the bacterial cell surface was verified by SDS-PAGE, Western blotting, whole cell ELISA, and immunofluorescence microscopy. After thrombin cleavage the thrombin-like enzyme activity of recombinant salmobin was tested and verified. We concluded that INP-based cell surface display can be used as a novel expression system for eukaryotic proteins.  相似文献   

11.
Methyl parathion hydrolase (MPH) has been displayed on the surface of microorganisms for the first time using only N- and C-terminal domains of the ice nucleation protein (INPNC) from Pseudomonas syringae INA5 as an anchoring motif. A shuttle vector pINCM coding for INPNC-MPH was constructed and used to target MPH onto the surface of a natural p-nitrophenol (PNP) degrader, Pseudomonas putida JS444, overcoming the potential substrate uptake limitation. Over 90% of the MPH activity was located on the cell surface as determined by protease accessibility and cell fractionation experiments. The surface localization of the INPNC-MPH fusion was further verified by Western blot analysis and immunofluorescence microscopy. The engineered P. putida JS444 degraded organophosphates as well as PNP rapidly without growth inhibition. Compared to organophosphorus hydrolase-displaying systems reported, changes in substrate specificity highlight an important potential use of the engineered strain for the clean-up of specific organophosphate nerve agents.  相似文献   

12.
Synthetic phytochelatins (ECs) composed of (Glu-Cys)nGly are protein analogs of phytochelatin that exhibit improved metal-binding capacity over metallothioneins (MTs). Expression of EC20 on the surface of E. coli using the Lpp-OmpA anchor resulted in improved bioaccumulation of cadmium and mercury, providing a new method for treating heavy metal contamination. To further improve the whole-cell accumulation of heavy metals, EC20 was expressed on the surface of Moraxella sp., a bacterium known to survive in contaminated environments, using the truncated ice nucleation protein (INPNC) anchor. Production of EC20 was approximately three-fold higher in Moraxella sp. than E. coli. As a consequence, the mercury-binding capacity of the recombinant Moraxella sp. was increased by more than 10-fold. Owing to the very high level of surface expression, the use of Moraxella sp. and INPNC anchor may prove to be useful for the remediation of other environmental contaminants.  相似文献   

13.
[目的]验证来源于丁香假单胞菌的冰核蛋白在乳酸乳球菌表面展示外源蛋白的可能性.[方法]以绿色荧光蛋白(Green Fluorescence Protein,GFP)基因gfp为报告基因,以冰核蛋白基因的N末端和NC端作为展示单元,构建乳酸菌表面展示载体pHZ101和pHZ102,并转化大肠杆菌(Escherichia coli JM109和乳酸乳球菌(Lactococcus lactis)MG1363.[结果]荧光显微镜观察显示重组大肠杆菌和乳酸乳球菌均能检测到绿色荧光.Western blot结果表明GFP蛋白在重组大肠杆菌和乳酸乳球菌中均得到表达,并且INPN-GFP蛋白多数滞留于乳酸乳球菌细胞质内,而INPNC-GFP蛋白则大部分定位于乳酸乳球菌的细胞膜上.[结论]以上结果表明丁香假单胞菌的冰核蛋白能引导外源蛋白定位于乳酸乳球菌的细胞膜上,为乳酸菌表面展示系统的构建提供了新的方向.  相似文献   

14.
A new system designed for cell surface display of recombinant proteins on Escherichia coli was evaluated for expression of eukaryotic viral antigens. The major surface antigen of hepatitis B virus (HBsAg) was fused to the ice nucleation protein (INP), an outer membrane protein of Pseudomonas syringae. Western blotting, immunofluorescence microscopy, whole-cell ELISA, and ice nucleation activity assay confirmed expression of recombinant proteins on the surface of Escherichia coli. This study indicated that INP-based cell surface display can be used for epitope mapping and recombinant bacteria expressing hepatitis viral antigens may be used for developing live vaccines.  相似文献   

15.
The conventional enhanced biological phosphorus removal (EBPR) system often deteriorates at low chemical oxygen demand (COD) or under aeration conditions. A new approach that incorporates phosphate-eutrophic wastewater remediation was introduced through immobilization of an intracellular phosphate-binding protein (PBP) onto the surface of Pseudomonas putida or Escherichia coli , using the N-terminal anchor (InaQ-N) of a newly identified ice nucleation protein from Pseudomonas syringae . A green fluorescent protein-fusion protein was expressed and used to confirm surface localization. The PBP was then targeted to the surface of E. coli JM109 and P. putida AB92019. The engineered P. putida and E. coli microorganisms were capable of absolute biosorption of total phosphates at rates of 60 and 80 mg L−1, respectively, over 5 h. In the recombinant P. putida cells, a surface-immobilized PBP fusion that had three tandemly repeated InaQ-Ns exhibited the maximum increment in phosphate biosorption, at sixfold compared with the control strain. Even heat-killed recombinant cells of either P. putida or E. coli retained substantial biosorptive activities. The current study demonstrates that the bacterial surface display of PBP should be considered as a strong contender for generating organisms capable of functioning in EBPR systems under low COD, resulting in improved removal of eutrophic phosphorus from wastewaters.  相似文献   

16.
We report here the first crystal structure of the N-terminal domain of an A-type Lon protease. Lon proteases are ubiquitous, multidomain, ATP-dependent enzymes with both highly specific and non-specific protein binding, unfolding, and degrading activities. We expressed and purified a stable, monomeric 119-amino acid N-terminal subdomain of the Escherichia coli A-type Lon protease and determined its crystal structure at 2.03 A (Protein Data Bank [PDB] code 2ANE). The structure was solved in two crystal forms, yielding 14 independent views. The domain exhibits a unique fold consisting primarily of three twisted beta-sheets and a single long alpha-helix. Analysis of recent PDB depositions identified a similar fold in BPP1347 (PDB code 1ZBO), a 203-amino acid protein of unknown function from Bordetella parapertussis, crystallized as part of a structural genomics effort. BPP1347 shares sequence homology with Lon N-domains and with a family of other independently expressed proteins of unknown functions. We postulate that, as is the case in Lon proteases, this structural domain represents a general protein and polypeptide interaction domain.  相似文献   

17.
Antibodies raised against a synthetic peptide specifically detect ice nucleation proteins from Pseudomonas species in Western blots. In immunofluorescent staining of whole bacteria, the antibodies reveal the protein in clusters, as indicated by patches of intense fluorescence in Escherichia coli cells heterologously expressing Pseudomonas ice nucleation genes. The abundance, size, and brightness of the clusters vary considerably from cell to cell. Their varying sizes may explain the variability in activity of bacterial ice nuclei. Growth at lower temperatures produces more ice nuclei, and gives brighter and more frequent patches, than growth at 37 degrees C. The observed clustering may thus reflect formation of functional ice nucleation sites in vivo. The presence of ice nucleation protein in clusters is also correlated with alterations in cell morphology.  相似文献   

18.
E. coli Hsp100 ClpB can disaggregate denatured polypeptides by employing ATP hydrolysis. The ClpB N-terminal domain (ClpBN) has been proposed to play important roles in ClpB molecular chaperone activities. We have determined the crystal structure of ClpBN to 1.95 A resolution by MAD methods. The ClpBN monomer contains two subdomains that have similar folds. The crystal structure revealed a hydrophobic groove on the molecular surface. We have constructed ClpB mutants in which the hydrophobic residues within the putative peptide binding groove were replaced by glutamine. These ClpB mutants exhibited severe defects in molecular chaperone activity but retained the wild-type ATPase activity.  相似文献   

19.
Summary Enzymatic digestion of35S ribosomal protein with pronase yielded 0.14 molar % of the amino acids as N-formylmethionine. Analysis showed that approximately two polypeptide chains in the protein of the 30 S subparticle and approximately nine in the 50 S subparticle start with N-formylmethionine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号