首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
【目的】保幼激素酸甲基转移酶(juvenile hormone acid methyl transferase, JHAMT)是保幼激素(juvenile hormone, JH)合成通路中的关键限速酶。本研究旨在筛选并验证靶向调控黑腹果蝇Drosophila melanogaster JHAMT转录表达的miRNA,揭示miRNA在JH生物合成中的作用机理。【方法】首先通过miRanda, TargetScan和microT-CDS在线网站对靶向黑腹果蝇JHAMT的miRNA进行预测,取3个网站均能预测到的miRNA作为候选靶向JHAMT的miRNA;利用双荧光素酶系统对候选miRNA与JHAMT的靶向关系进行验证;qRT-PCR检测候选miRNA与JHAMT在黑腹果蝇生长发育中的表达模式;利用qRT-PCR和果蝇GAL4-UAS系统分别检测黑腹果蝇咽侧体中超表达miRNA对JHAMT的表达以及对黑腹果蝇变态发育的影响。【结果】 miRanda, TargetScan和microT-CDS分别预测到5, 18和16个靶向JHAMT的miRNA,共同预测到4个miRNA,分别是miR-252-5p, miR-277-3p, miR-1002-5p和miR-987-5p。双荧光素酶检测结果表明,miR-252-5p mimics可显著降低野生型JHAMT 3′UTR荧光素酶报告基因载体所表达的荧光素酶活性,而JHAMT 3′UTR区中miR-252-5p结合位点突变后,该抑制作用被解除。qRT-PCR检测结果表明,miR-252-5p与JHAMT在黑腹果蝇卵、幼虫及预蛹期的转录表达模式相反。咽侧体中超表达miR-252后,可显著降低JHAMT和JH初级反应基因Kr-h1的表达水平;且表现出类似JH缺失的表型,如化蛹时间推迟、体重变轻以及蛹期死亡增加。【结论】miR-252-5p可通过靶向作用于JHAMT参与JH生物合成调控,从而影响果蝇变态发育。  相似文献   

5.
6.
7.
Several microRNAs (miRNAs) that are either specifically enriched or highly expressed in neurons and glia have been described, but the identification of miRNAs modulating neural stem cell (NSC) biology remains elusive. In this study, we exploited high throughput miRNA expression profiling to identify candidate miRNAs enriched in NSC/early progenitors derived from the murine subventricular zone (SVZ). Then, we used lentiviral miRNA sensor vectors (LV.miRT) to monitor the activity of shortlisted miRNAs with cellular and temporal resolution during NSC differentiation, taking advantage of in vitro and in vivo models that recapitulate physiological neurogenesis and gliogenesis and using known neuronal- and glial-specific miRNAs as reference. The LV.miRT platform allowed us monitoring endogenous miRNA activity in low represented cell populations within a bulk culture or within the complexity of CNS tissue, with high sensitivity and specificity. In this way we validated and extended previous results on the neuronal-specific miR-124 and the astroglial-specific miR-23a. Importantly, we describe for the first time a cell type- and differentiation stage-specific modulation of miR-93 and miR-125b in SVZ-derived NSC cultures and in the SVZ neurogenic niche in vivo, suggesting key roles of these miRNAs in regulating NSC function.  相似文献   

8.
Blood microRNA (miRNA) levels have been associated with and shown to participate in disease pathophysiology. However, the hematopoietic cell of origin of blood miRNAs and the individual blood cell miRNA profiles are poorly understood. We report the miRNA content of highly purified normal hematopoietic cells from the same individuals. Although T-cells, B-cells and granulocytes had the highest miRNA content per cell, erythrocytes contributed more cellular miRNA to the blood, followed by granulocytes and platelets. miRNA profiling revealed different patterns and different expression levels of miRNA specific for each lineage. miR-30c-5p was determined to be an appropriate reference normalizer for cross-cell qRT-PCR comparisons. miRNA profiling of 5 hematopoietic cell lines revealed differential expression of miR-125a-5p. We demonstrated endogenous levels of miR-125a-5p regulate reporter gene expression in Meg-01 and Jurkat cells by (1) constructs containing binding sites for miR-125a-5p or (2) over-expressing or inhibiting miR-125a-5p. This quantitative analysis of the miRNA profiles of peripheral blood cells identifies the circulating hematopoietic cellular miRNAs, supports the use of miRNA profiles for distinguishing different hematopoietic lineages and suggests that endogenously expressed miRNAs can be exploited to regulate transgene expression in a cell-specific manner.  相似文献   

9.
10.
11.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.  相似文献   

12.
MicroRNAs (miRNAs) regulate activities in living organisms through various signaling pathways and play important roles in the development and progression of osteoporosis. The balance between osteogenic and adipogenic differentiation of rBMSCs is closely related to the occurrence of osteoporosis. ERα regulates bone metabolism in various tissues. However, the correlation among ERα, miRNAs, and the differentiation of rBMSCs is still unclear. In this study, we used lentivirus transfection into rBMSCs to construct an ERα-deficient model, analyzed the differences in expressed miRNAs between control and ERα-deficient rBMSCs. The results revealed that the expression of 25 miRNAs were upregulated, 164 miRNAs were downregulated, and some of the regulated miRNAs such as miR-210-3p and miR-214-3p were related to osteogenic or adipogenic differentiation, as well as to particular signaling pathways. Next, we overexpressed miR-210-3p to evaluate its effects on the osteogenic and adipogenic differentiation of rBMSCs, and identified the relationship among miR-210-3p, Wnt signaling pathway, and the differentiation of rBMSCs. The results indicated that ERα-deficient inhibited osteogenic differentiation, promoted adipogenic differentiation, and regulated the expression of some miRNAs. Meanwhile, overexpression of miR-210-3p promoted osteogenic differentiation and inhibited adipogenic differentiation of rBMSCs, processes likely to be related to the Wnt signaling pathway. In conclusion, we identified a group of upregulated and downregulated miRNAs in ERα-deficient rBMSCs that might play a vital role in regulating osteogenic or adipogenic differentiation. One of these, miR-210-3p, inhibited osteogenic differentiation and promoted adipogenic differentiation correlated with the Wnt signaling pathway in ERα-deficient rBMSCs, providing new insight into the regulation of bone metabolism.  相似文献   

13.
14.

Background

Mesenchymal stem (MS) cells are excellent candidates for cell-based therapeutic strategies to regenerate injured tissue. Although human MS cells can be isolated from bone marrow and directed to differentiate by means of an osteogenic pathway, the regulation of cell-fate determination is not well understood. Recent reports identify critical roles for microRNAs (miRNAs), regulators of gene expression either by inhibiting the translation or by stimulating the degradation of target mRNAs.

Methodology/Principal Findings

In this study, we employed a library of miRNA inhibitors to evaluate the role of miRNAs in early osteogenic differentiation of human MS cells. We discovered that miR-148b, -27a and -489 are essential for the regulation of osteogenesis: miR-27a and miR-489 down-regulate while miR-148b up-regulates differentiation. Modulation of these miRNAs induced osteogenesis in the absence of other external differentiation cues and restored osteogenic potential in high passage number human MS cells.

Conclusions/Significance

Overall, we have demonstrated the utility of the functional profiling strategy for unraveling complex miRNA pathways. Our findings indicate that miRNAs regulate early osteogenic differentiation in human MS cells: miR-148b, -27a, and -489 were found to play a critical role in osteogenesis.  相似文献   

15.
ABSTRACT: BACKGROUND: Previous work showed that miRNAs play key roles in the regulation of metamorphosis in the hemimetabolan species Blattella germanica. To gain insight about which miRNAs might be important, we have constructed two miRNA libraries, one of the penultimate, pre-metamorphic nymphal instar (N5) and the other of the last, metamorphic nymphal instar (N6). RESULTS: High throughput sequencing gave 61 canonical miRNAs present in the N5 and N6 libraries, although at different proportions in each. Comparison of both libraries led to identify three and 37 miRNAs significantly more expressed in N5 and N6 respectively. Twelve of these 40 miRNAs were then investigated further by qRT-PCR and results indicated that miR-252-3p was well expressed in N5 but not in N6, whereas let-7-5p, miR-100-5p and miR-125-5p showed the reverse pattern. 20-Hydroxyecdysone (20E) tended to stimulate miRNA expression, whereas juvenile hormone (JH) inhibited the 20E stimulatory effect. Expression of let-7, miR-100 and miR-125 was increased by 20E, which has also been observed in D. melanogaster. The only miRNA that was inhibited by 20E was miR-252-3p. The involvement of let-7, miR-100 and miR-125 in metamorphosis has been demonstrated in other insects. Depletion of miR-252-3p caused growth and developmental delays, which suggests that this miRNA is involved in regulating these processes prior to metamorphosis. CONCLUSIONS: The comparative analysis of miRNA libraries from pre-metamorphic (N5) and metamorphic stages (N6) of B. germanica proved to be a useful tool to identify miRNAs with roles in hemimetabolan metamorphosis. Three miRNAs emerged as important factors in the metamorphic stage (N6): let-7-5p, miR-100-5p and miR-125-5p, whereas miR-252-3p appears to be important in the pre-metamorphic stage (N5).  相似文献   

16.
MicroRNA (miRNA) is small non-coding RNA with approximate 22 nt in length. Recent studies indicate that miRNAs play significant roles in pathogen-host interactions. Brucella organisms are Gram-negative facultative intracellular bacteria that cause Brucellosis. Brucella strains infect macrophages and establish chronic infection by altering host life activities including apoptosis and autophagy. Here, we report a comprehensive analysis of miRNA expression profiles in mock- and Brucella-infected RAW264.7 cells using high-throughput sequencing approach. In total, 344 unique miRNAs were co-expressed in the two libraries, in which 57 miRNAs were differentially expressed. Eight differentially expressed miRNAs with high abundance were subjected to further analysis. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in apoptosis, autophagy and immune response. In particular, a total of 25 target genes are involved in regulating apoptosis and autophagy, indicating that these miRNAs may play important regulatory roles in the Brucella-host interactions. Furthermore, the interactions of miR-1981 and its target genes, Bcl-2 and Bid, were validated by luciferase assay. The results show that miR-1981 mimic up-regulated the luciferase activity of psiCHECK-2 Bcl-2 3' UTR, but the luciferase activity of psiCHECK-2 Bid 3' UTR was not changed significantly. Taken together, these data provide valuable framework on Brucella induced miRNA expression in RAW264.7 cells, and suggest that Brucella may establish chronic infection by regulating miRNA expression profile.  相似文献   

17.
This study aimed to explore the roles of microRNAs (miRNAs) in calf rumen development during early life. Rumen tissues were collected from 16 calves (8 at pre-weaning and 8 at post-weaning) for miRNA-sequencing, differential expression (DE), miRNA weighted gene co-expression network (WGCNA) and miRNA-mRNA co-expression analyses. 295 miRNAs were identified. Bta-miR-143, miR-26a, miR-145 and miR-27b were the most abundantly expressed. 122 miRNAs were significantly DE between the pre- and post-weaning periods and the most up- and down-regulated miRNAs were bta-miR-29b and bta-miR-493, respectively. Enrichment analyses of the target genes of DE miRNAs revealed important roles for miRNA in rumen developmental processes, immune system development, protein digestion and processes related to the extracellular matrix. WGCNA indicated that bta-miR-145 and bta-miR-199a-3p are important hub miRNAs in the regulation of these processes. Therefore, bta-miR-143, miR-29b, miR-145, miR-493, miR-26a and miR-199 family members might be key regulators of calf rumen development during early life.  相似文献   

18.
19.
Studies have indicated that Nel-like molecule-1 (NELL-1) was an osteoblast-specific cytokine and some specific microRNAs (miRNAs) could serve as competing endogenous RNA (ceRNA) to partake in osteogenic differentiation of human adipose-derived stem cells (hASCs). The aim of this study was to explore the potential functional mechanisms of recombinant human NELL-1 protein (rhNELL-1) during hASCs osteogenic differentiation. rhNELL-1 was added to osteogenic medium to activate osteogenic differentiation of hASCs. High-throughput RNA sequencing (RNA-Seq) was performed and validated by real-time quantitative polymerase chain reaction. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to detect the functions of differentially expressed miRNAs and genes. Coding-noncoding gene co-expression network and ceRNA networks were constructed to predict the potential regulatory role of miRNAs. A total of 1010 differentially expressed miRNAs and 1762 differentially expressed messenger RNAs (mRNAs) were detected. miRNA-370-3p, bone morphogenetic protein 2 (BMP2), and parathyroid hormone like hormone (PTHLH) were differentially expressed during NELL-1-induced osteogenesis. Bioinformatic analyses demonstrated that these differentially expressed miRNAs and mRNAs enriched in Rap1 signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, Glucagon signaling pathway, and hypoxia-inducible factor-1 signaling pathway, which were important pathways related to osteogenic differentiation. In addition, miRNA-370-3p and has-miR-485-5p were predicted to interact with circ0001543, circ0002405, and ENST00000570267 in ceRNA networks. Based on the gain or loss of functional experiments by transfection, the results showed that miR-370-3p was a key regulator in osteogenic differentiation by targeting BMP2 and disturbing the expression of PTHLH, and participated in NELL-1-stimulated osteogenesis. The present study provided the primary data and evidence for further exploration on the roles of miRNAs and ceRNAs during NELL-1-induced ossification of hASCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号