首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo.  相似文献   

2.
This study investigated the actions of fibroblast growth factor (FGF)-18, a novel member of the FGF family, on osteoblasts, chondrocytes, and osteoclasts and compared them with those of FGF-2 and FGF-10. FGF-18 stimulated the proliferation of cultured mouse primary osteoblasts, osteoblastic MC3T3-E1 cells, primary chondrocytes, and prechondrocytic ATDC5 cells, although it inhibited the differentiation and matrix synthesis of these cells. FGF-18 up-regulated the phosphorylation of extracellular signal-regulated kinase in both osteoblasts and chondrocytes and up-regulated the phosphorylation of p38 mitogen-activated protein kinase only in chondrocytes. FGF-18 mitogenic actions were blocked by a specific inhibitor of extracellular signal-regulated kinase in both osteoblasts and chondrocytes and by a specific inhibitor of p38 mitogen-activated protein kinase in chondrocytes. With regard to the action of FGF-18 on bone resorption, FGF-18 not only induced osteoclast formation through receptor activator of nuclear factor-kappaB ligand and cyclooxygenase-2 but also stimulated osteoclast function to form resorbed pits on a dentine slice in the mouse coculture system. All these effects of FGF-18 bore a close resemblance to those of FGF-2, whereas FGF-10 affects none of these cells. FGF-18 may therefore compensate for the action of FGF-2 on bone and cartilage.  相似文献   

3.
The cells that express the genes for the fibrillar collagens, types I, II, III and V, during callus development in rabbit tibial fractures healing under stable and unstable mechanical conditions were localized. The fibroblast-like cells in the initial fibrous matrix express types I, III and V collagen mRNAs. Osteoblasts, and osteocytes in the newly formed membranous bone under the periosteum, express the mRNAs for types I, III and V collagens, but osteocytes in the mature trabeculae express none of these mRNAs. Cartilage formation starts at 7 days in calluses forming under unstable mechanical conditions. The differentiating chondrocytes express both types I and II collagen mRNAs, but later they cease expression of type I collagen mRNA. Both types I and II collagens were located in the cartilaginous areas. The hypertrophic chondrocytes express neither type I, nor type II, collagen mRNA. Osteocalcin protein was located in the bone and in some cartilaginous regions. At 21 days, irrespective of the mechanical conditions, the callus consists of a layer of bone; only a few osteoblasts lining the cavities now express type I collagen mRNA.We suggest that osteoprogenitor cells in the periosteal tissue can differentiate into either osteoblasts or chondrocytes and that some cells may exhibit an intermediate phenotype between osteoblasts and chondrocytes for a short period. The finding that hypertrophic chondrocytes do not express type I collagen mRNA suggests that they do not transdifferentiate into osteoblasts during endochondral ossification in fracture callus.  相似文献   

4.
The effect of chick embryo extract on the phenotypic expression of differentiated chondrocytes has been studied in consideration of the fact that these cells are well characterized by certain specific cell products, such as type H proteochondroitin sulfate and type II collagen. In this study, we utilized floating chondrocytes derived from chick embryonic sterna, which can be cultured in suspension with no apparent change in the type of cell products for at least a period of eight weeks, as described in a previous paper (1). In the presence of chick embryo extract in the medium, the floating chondrocytes became attached to the bottom of the culture dish, and the attached cells took on a fibroblast-like appearance. Biochemical analyses of the proteochondroitin sulfate and collagen synthesized by the attached cells revealed that if the culture medium was renewed everyday, the cells having a fibroblast-like appearance continued to synthesize type H proteochondroitin sulfate and type II collagen. When however, the medium was replaced every other day, the synthesis of both proteochondroitin sulfate and collagen by the attached cells switched from the chondrocyte type to the fibroblast type, i.e. the synthesis of type M proteochondroitin sulfate and type I collagen, with little change in the fibroblast-like appearance. The results show that the morphological features of chondrocytes are not necessarily associated with the biochemical properties of these cells, and further suggest that, in chick embryo extract, there is no modulator capable of acting directly on the chondrocytes to bring about phenotypic changes with respect to the synthesis of collagen and proteoglycans.  相似文献   

5.
We have investigated the temporal pattern of expression of c-fos in cartilage cells in mouse mandibular condyles. During in vitro cultivation, the progenitor cells in this organ differentiate to osteoblasts, and hypertrophic chondrocytes start to show features indicative of osteogenic differentiation. Prior to these processes we observed two distinct patterns of c-fos expression. High, transient c-fos expression was found in the entire tissue within 30 min of culture. This type of c-fos expression appeared to result from mechanical forces applied during dissection. The second type of c-fos expression appeared in individual cells in the zone of hypertrophic chondrocytes. A varying number of formerly quiescent chondrocytes expressed high levels of c-fos mRNA after between 30 min and 10 d in culture, with a peak in the number of cells between days 1 and 3. c-fos expression in these cartilage cells was followed by DNA replication and expression of genes typifying osteoblastic differentiation. After 7 d in culture, groups of cells with the typical ultrastructural features of osteoblasts, and surrounded by an osteoid-like matrix, were observed in single chondrocyte-type lacunae, suggesting division of chondrocytes and differentiation to osteoblasts. The data suggest that c-fos may play a crucial role in the perturbation of determined pathways of skeletoblast differentiation and in the regulation of endochondral bone formation.  相似文献   

6.
Expression of specific differentiation markers was investigated by histochemistry, immunofluorescence, and biosynthetic studies in osteoblasts outgrown from chips derived from tibia diaphyses of 18-day-old chick embryos. The starting osteoblast population expressed type I collagen and alkaline phosphatase in addition to other bone and cartilage markers as the lipocalin Ch21; the extracellular matrix deposited by these cells was not stainable for cartilage proteoglycans, and mineralization was observed when the culture was maintained in the presence of ascorbic acid, calcium and beta-glycerophosphate. During culture, clones of cells presenting a polygonal chondrocyte morphology and surrounded by an Alcian-positive matrix appeared in the cell population. Type II collagen and type X collagen were synthesized in these areas of chondrogenesis. In addition, chondrocytes isolated from these cultures expressed Ch21 and alkaline phosphatase. Chondrocytes were generated also from homogeneous osteoblast populations derived from a single cloned cell. The coexistence of chondrocytes and osteoblasts was observed during amplification of primary clones as well as in subclones. The data show the existence, within embryonic bone, of cells capable in vitro of both osteogenic and chondrogenic differentiation.  相似文献   

7.
Bone marrow contains mesenchymal cells that can be isolated and grown in vitro. Using appropriate treatment protocols such cultures can be induced to differentiate to yield osteoblasts, adipocytes, and chondrocytes. However, previous experiments had not addressed the question whether single pluripotent stem cells exist and can give rise to these different cell lineages or whether bone marrow mesenchymal cell preparations represent a mixture of committed precursors. We have used human adult bone marrow-derived mesenchymal cells obtained from iliac crest biopsies to demonstrate clonal outgrowth after limiting dilution and we show that some clones can be expanded over more than 20 cumulative population doublings and differentiated to osteoblasts, adipocytes, and chondrocytes. Our data provide direct experimental evidence that cultures of bone marrow-derived mesenchymal cells contain individual cells that fulfil two essential stem cell criteria: (i) extensive self-renewal capacity and (ii) multi-lineage potential.  相似文献   

8.
Periosteal cells were enzymatically liberated from the tibiae of young chicks, introduced into cell culture, and allowed to reach confluence. The morphology of the cells gave the impression of a relatively homogeneous population of fibroblast-like cells. These cultured cells did not overtly express osteogenic or chondrogenic properties as judged by their morphology and the lack of reactivity with probes to phenotype-specific antigens of osteoblasts or chondrocytes. The cells were then replated at relatively high density and chronologically evaluated for the differentiation of bone and cartilage. These replated cells formed a multi-layer of fibroblast-like cells, the top portion of which eventually differentiated into bone tissue as evidenced by the presence of mineralization and immunocytochemical reactivity to bone Gla protein- and osteocyte-specific probes. Cells below this distinctive top layer differentiated into chondrocytes, which eventually further developed into hypertrophic chondrocytes as evidenced by their morphology and the presence of immunoreactive type X collagen in the matrix. Mineralization was also observed in the territorial matrix of these hypertrophic chondrocytes, when the culture was augmented with beta-glycerophosphate. Periosteal-derived cells replated at a lower density as controls did not show signs of osteochondrogenic differentiation. These observation suggest that periosteal-derived cells of young chicks contain mesenchymal cells which possess the potential to undergo terminal differentiation into osteogenic or chondrogenic phenotypes depending on local environmental or positional cues.  相似文献   

9.
Periosteal cells were enzymatically liberated from the tibiae of young chicks, introduced into cell culture, and allowed to reach confluence. The morphology of the cells gave the impression of a relatively homogeneous population of fibroblast-like cells. These cultured cells did not overtly express osteogenic or chondrogenic properties as judged by their morphology and the lack of reactivity with probes to phenotype-specific antigens of osteoblasts or chondrocytes. The cells were then replated at relatively high density and chronologically evaluated for the differentiation of bone and cartilage. These replated cells formed a multi-layer of fibroblast-like cells, the top portion of which eventually differentiated into bone tissue as evidenced by the presence of mineralization and immunocytochemical reactivity to bone Gla protein- and osteocyte-speciflc probes. Cells below this distinctive top layer differentiated into chondrocytes, which eventually further developed into hypertrophie chondrocytes as evidenced by their morphology and the presence of immunoreactive type X collagen in the matrix. Mineralization was also observed in the territorial matrix of these hypertrophie chondrocytes, when the culture was augmented with β-glycerophosphate. Periosteal-derived cells replated at a lower density as controls did not show signs of osteochondrogenic differentiation. These observations suggest that periosteal-derived cells of young chicks contain mesenchymal cells which possess the potential to undergo terminal differentiation into osteogenic or chondrogenic phenotypes depending on local environmental or positional cues.  相似文献   

10.
11.
To elucidate the process of endochondral ossification in human osteophytes we have studied the expression of parathyroid hormone-related protein (PTHrP), its receptor (PTHr), and fibroblast growth factor receptor 3 (FGFR3). Osteophytes from patients undergoing total knee replacement ( n=13), and fetal growth plate cartilages ( n=4) were processed for safranin O staining and immunohistochemistry. Chondrocytes and their matrix were preferentially stained for PTHrP in the middle and deep zones of the osteophytes examined. Ossified areas did not show a positive staining. In fetal joints the cartilaginous surface and the perichondrium as well as the osteoblasts in the trabecular bone were positive. PTHr was expressed at large in chondrocytes and osteoblasts of all osteophytes and fetal joints. Cells of the perichondrium were also positive. The FGFR3 antibody stained only single chondrocytes in some osteophytes, and groups of cells in others. In fetal samples, chondrocytes of the proliferating and the hypertrophic zone showed staining for FGFR3. This is the first report on the expression of PTHrP, PTHr, and FGFR3 in human osteophytes. As in fetal joints these mediators might regulate proliferation and differentiation of chondrocytes playing an important role in osteo(chondro)phyte growth.  相似文献   

12.
Cytological Study of Wheat Spike Infection by Bipolaris sorokiniana   总被引:1,自引:0,他引:1  
The infection of wheat spikelets by Bipolaris sorokiniana , the causal agent of black point on grains and grain shrivelling, was examined by light and electron microscopy. Conidia of the pathogen germinated 6–12 h after inoculation on the surfaces of the different spike tissues. Extracellular sheaths were observed on germ tubes and appressoria attached to the surfaces of lemma, palea and seeds, but were only scarcely detected on the surface of conidia. Appressoria, frequently found over grooves, formed penetration hyphae invading the epidermal cell walls. Infection process was similar on the surface of the lemma, palea and glume. Growth of the fungus in the epidermal and parenchyma cells was found predominantly in the cell walls, and hyphae also extended intercellularly and intracellularly. Infection of seeds appeared to occur via two ways: (i) direct infection of the outer layers of the cell walls of the pericarp and (ii) through entering the stigma into the pericarp cells. Secretion of host cell wall hydrolytic enzymes at the apex of the penetrating hyphae may facilitate the spread of the fungus. In addition, toxins secreted by the fungus might explain the rapid death of host cells in contact with or distant to fungal cells. A host response to fungal infection involved the development of appositions between cell wall and plasma membrane in cells adjacent to fungal cells. Fungal hyphae were sometimes also surrounded by electron dense material.  相似文献   

13.
14.
Summary Cell-specific antigens are mainly found in cells or membrane surfaces rather than in the surrounding matrix. However, until now it was not possible to produce antibodies specific for cellular structures of chondrocytes. In 1989, Lance (Immunol. Lett. 21:63–73; 1989) first established specific monoclonal antibodies for human articular chondrocytes tested only by immunofluorescence. Studies describing the specificity of these five antibodies (HUMC 1–5) and their relevance for immunohistological analysis of cartilage tissue were not available until now. Therefore, the aim of the following study was to investigate the distribution of HUMC 1, 2, 3, 4, and 5 in mesenchymal cellsin vivo andin vitro immunohistochemically. Further investigations concentrate on the localization of chondrocyte specific antigens using immunoelectron microscopy. Immunohistological studies showed positive immunostainings with all five antibodies in human chondrocytesin vivo andin vitro. A cross-reaction with human fibroblasts and osteoblasts for the antibodies HUMC 2 and HUMC 5 was observed. furthermore, a parallel loss of immunoreactivity for HUMC 1, HUMC 3, and HUMC 4 was observed in cultured chondrocytes indicating that the specific antigens vanish during differentiation observedin vitro. Subsequent immunoblot analysis employing collagens as antigens did not show any reactivity. Using immunoelectron microscopy, gold particle labeling was observed in intracytoplasmatic vesicles of isolated chondrocytes. Our results indicate that HUMC 1, HUMC 3, and HUMC 4 are specific for cartilage cells and might be suitable for immunohistological analysis of different cartilage tissues and pathologically altered chondrocytes.  相似文献   

15.
Understanding the response of chondrocytes to topographical cues and chemical patterns could provide invaluable information to advance the repair of chondral lesions. We studied the response of primary chondrocytes to nano- and micro-grooved surfaces, and sulphated hyaluronic acid (HyalS). Cells were grown on grooves ranging from 80 nm to 9 microm in depth, and from 2 microm to 20 microm in width. Observations showed that the cells did not spread appreciably on any groove size, or alter morphology or F-actin organization, although cells showed accelerated movement on 750 nm deep grooves in comparison to flat surfaces. On chemical patterns, the cells migrated onto, and preferentially attached to, HyalS and showed a greater degree of spreading and F-actin re-arrangement. This study shows that 750 nm deep grooves and sulphated hyaluronic acid elicit responses from primary chondrocytes, and this could have implications for the future direction of cartilage reconstruction and orthopaedic treatments in general.  相似文献   

16.
17.
Ovotransferrin expression during chick embryo tibia development has been investigated in vivo by immunocytochemistry and in situ hybridization. Ovotransferrin was first observed in the 7 day cartilaginous rudiment. At later stages, the factor was localized in the articular zone of the bone epiphysis and in the bone diaphysis where it was concentrated in hypertrophic cartilage, in zones of cartilage erosion and in the osteoid at the chondro-bone junction. When the localization of the ovotransferrin receptors was investigated, it was observed that chondrocytes at all stages of differentiation express a low level of the oviduct (tissue) specific receptor. Interestingly, high levels of the receptor were detectable in the 13-d old tibia in the diaphysis collar of stacked-osteoprogenitor cells and in the layer of derived osteoblasts. High levels of oviduct receptor were also observed in the primordia of the menisci. Metabolic labeling of proteins secreted by cultured chondrocytes and osteoblasts and Northern blot analysis of RNA extracted from the same cells confirmed and completed the above information. Ovotransferrin was expressed by in vitro differentiating chondrocytes in the early phase of the culture and, at least when culture conditions allowed extracellular matrix assembly, also by hypertrophic chondrocytes and derived osteoblast-like cells. Osteoblasts directly obtained from bone chips produced ovotransferrin only at the time of culture mineralization. By Western blot analysis, oviduct receptor proteins were detected at a very low level in extract from differentiating and hypertrophic chondrocytes and at a higher level in extract from hypertrophic chondrocytes undergoing differentiation to osteoblast-like cells and from mineralizing osteoblasts. Based on these results, the existence of autocrine and paracrine loops involving ovotransferrin and its receptor during chondrogenesis and endochondral bone formation is discussed.  相似文献   

18.
Fibromodulin, a keratan-sulfate proteoglycan, was first isolated in articular cartilage and tendons. We have identified fibromodulin as a gene regulated during BMP-2-induced differentiation of a mouse prechondroblastic cell line. Because expression of fibromodulin during endochondral bone formation has not been studied, we examined whether selected cells of the chondrocytic and osteoblastic lineage expressed fibromodulin. Fibromodulin mRNA was detected in conditionally immortalized murine bone marrow stromal cells, osteoblasts, and growth plate chondrocytes, as well as in primary murine calvarial osteoblasts. We, therefore, investigated the temporo-spatial expression of fibromodulin in vivo during endochondral bone formation by in situ hybridization. Fibromodulin was first detected at 15.5 days post coitus (dpc) in the perichondrium and proliferating chondrocytes. Fibromodulin mRNA was also detected at 15.5 dpc in the bone collar and periosteum. At later time points fibromodulin was expressed in the primary spongiosa and the endosteum. To determine whether fibromodulin was expressed during intramembranous bone formation as well, in situ hybridization was performed on calvariae. Fibromodulin mRNA was present in calvarial osteoblasts from 15.5 dpc. These results demonstrate that fibromodulin is developmentally expressed in cartilage and bone cells during endochondral and intramembranous ossification. These findings suggest that this extracellular matrix protein plays a role in both endochondral and intramembranous bone formation.  相似文献   

19.
Previous light microscopic studies showed that perfusion of the hamster jejunum with 4.8% ethanol (ethanol period) in vivo produced fluid-filled subepithelial blisters (blebs) on the villi. These blebs had virtually disappeared within 45 min after the discontinuation of the ethanol perfusion (recovery period). The present study examined these ethanol-induced changes in the jejunum by scanning (SEM) and transmission (TEM) electron microscopy. TEM revealed that ethanol did not damage epithelial cells in areas where blebs were not present. In these areas the basal surfaces of the epithelial cells were attached to the basal lamina, and the lateral intercellular spaces (LIS) were open. In the areas where blebs formed, the stretched epithelial cells which covered the blebs lost their basal anchoring and so could not maintain their LIS. Both SEM and TEM indicate that there was a decrease in the quantity of glycocalyx at the surfaces of cells which covered blebs. Our findings indicate that ethanol does not directly damage epithelial cells but that the cellular damage is due to detachment over the blebs. It is likely that ethanol at first traverses the epithelial layer and then produces stasis in the villus core. Continued fluid transport by the epithelial layer in the presence of statis results in accumulation of the fluid and widely dilated LIS. With subsequent enlargement of the LIS the bases of the cells detach from the basal lamina and blebs are formed.  相似文献   

20.
Thermally sensitive poly(N-isopropylacrylamide, NIPAAm) hydrogel beads conjugated with a cell adhesive motif, GRGDY, were prepared and utilized as cell culture substrate for chondrocytes. They were produced to be uniform in size and distribution by using calcium alginate as a temporal mold. The RGD moieties were introduced, in a spatially selective manner, to the surface of the beads by conjugating GRGDY under the precollapsed state at a higher temperature above the lower critical solution temperature (LCST). These RGD-conjugated polyNIPAAm beads demonstrated a reversible swelling and deswelling behavior around the LCST, which enabled the chondrocytes attached on the surface of collapsed beads at 37 degrees C to readily detach when the temperature was shifted below 37 degrees C. The cell detachment percentage was largely affected by the temperature-dependent reswelling extent of the collapsed RGD-modified beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号