首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell division in exponentially increasing populations of the wild-type, photosynthetic Z strain of Euglena gracilis Klebs cultured autotrophically on an aerated, magnetically stirred, minimal mineral medium (pH 7.0) in constant light (LL) or in a light-dark 1 hour:1 hour cycle (LD:1,1) at 25°C could be synchronized by a 10-hour:10-hour low (2 micromolar):normal (200 micromolar) cycle in the concentration of external calcium. Similar results were obtained with the photosynthesis-deficient, achlorophyllous ZC mutant cultured in darkness at 16°C on mineral medium supplemented with 0.1% ethanol as a carbon source; even a single low-Ca2+ (2 micromolar) pulse was effective in eliciting synchrony. In contrast, whereas the 20-hour entrained rhythm of cell division in ZC then free-ran with a circadian period (τ = 26 hours) for many cycles after the imposed calcium regimen was discontinued, division rhythmicity did not persist in the Z strain in LL. The rhythm in wild-type cultures (free-running in LD:1,1) could be phase-shifted by a single 2-hour increase (from 200 micromolar to 10 millimolar; HiCa) or decrease (from 200-2 micromolar; LoCa) in external Ca2+ concentration (varied by the addition of CaCl2 or EDTA, respectively, to the medium). Pulses were terminated by returning the cells to medium containing 200 micromolar Ca2+ (the normal concentration), and the steady-state phase-shifts engendered (if any) after transients had subsided were calculated with reference to an unperturbed culture. For both HiCa and LoCa pulses given at different circadian times, strong (type 0) phase-response curves (PRCs) were obtained, but although the LoCa PRC was the same as that obtained for light signals, the HiCa PRC was the opposite (a mirror image). These results implicate calcium in clock function, although it is likely that only a small portion of the total intracellular Ca2+ ion is playing a role since the period of the division rhythm in cultures grown in the continuous presence of excess Ca2+ or under LoCa was not altered significantly.  相似文献   

2.
The Ca2+ concentration in the cytosol of the marine ciliate protozoan Euplotes crassus has been evaluated utilizing the dye Fluo3-AM and measuring the fluorescent response by confocal laser scanning microscopy (CLSM). Serial sections were piled-up in a three dimensional image of the cell to estimate the cation intracellular spatial distribution and subsequently processed in order to quantify the free Ca2+ content.The results clearly demonstrated that nano-to micromolar concentrations of Hg2+ added to seawater culture medium caused up to a 12-fold increase in the free cytosolic Ca2+ of Euplotes crassus. Exposure of the protozoa to Cu2+, an essential element, also caused a sustained increase in the free cytosolic Ca2+.Pretreatment of Euplotes crassus with W5, a voltage-dependent Ca2+-channel blocker, greatly reduced the deleterious effects of the heavy metals on Ca2+ concentration. These results indicate that the increase of free Ca2+ concentration in the cytosol of the protozoa, induced by micromolar heavy metal concentrations, could depend on an increased influx of extracellular Ca2+ not physiologically compensated by the activity of the different mechanisms involved in Ca2+-homeostasis.  相似文献   

3.
The effects of blue light and calcium on elongation of hypocotyl segments of Cucumber (Cucumis sativa L. cv Burpee's Pickler) were studied. Cucumber seedlings grown in dim red light showed a rapid decline in the rate of hypocotyl elongation when irradiated with high intensity (100 micromoles per square meter per second) blue light. In intact, 4-day-old seedlings the inhibition began within 2 minutes after the onset of blue-light irradiation and reached a maximum of approximately 55% within 4 minutes. Hypocotyl segments cut from 4-day-old seedlings also showed an inhibition of elongation in response to blue light when segments were floated on aqueous buffer and exposed to blue light for 3 hours. In the presence of 2 micromolar indole-3-acetic acid, blue light caused a 50% inhibition of elongation. Buffering free calcium in the incubation medium with 0.1 millimolar ethylene glycol bis(-aminoethyl ether)- N,N,N′,N′-tetraacetic acid eliminated the blue-light inhibition of segment elongation. Several experiments confirmed a specific requirement for calcium for the blue-light-induced inhibition of segment elongation. Treating segments with 0.2 micromolar fusicoccin abolished the inhibition of elongation by blue light as did buffering the medium at pH 4. Adding 1 millimolar ascorbate to incubation medium also eliminated the inhibition of segment elongation caused by blue light. Several compounds implicated in cell-wall redox reactions alter the magnitude of the blue-light-induced inhibition. The activity of peroxidase isolated from the cell-wall free space of cucumber hypocotyls was inhibited by ascorbate and low pH. The results are consistent with the hypothesis that blue light inhibits elongation by inducing an increase in cell-wall peroxidase activity and implicate calcium ions in the response to blue light.  相似文献   

4.
《Developmental biology》1986,113(1):97-103
Calcium ions may act as a “second messenger” in phytochrome-mediated spore germination in Onoclea sensibilis L. In this study we determine whether changes in intracellular pH also contribute to the signal transduction chain. Using 31P nuclear magnetic resonance spectrometry, in which we are able to resolve changes as small as 0.2 pH units, we fail to observe any change in pH associated with red light irradiation. In addition artificially inducing an intracellular change in pH of greater than 1 pH unit (5.8-7.2) has no effect on germination. These data indicate that a sustained increase in intracellular pH does not contribute to the signal transduction chain in phytochrome-mediated fern spore germination.  相似文献   

5.
Arachidonic acid causes an increase in free cytoplasmic calcium concentration ([Ca2+]i) in differentiated skeletal multinucleated myotubes C2C12 and does not induce calcium response in C2C12 myoblasts. The same reaction of myotubes to arachidonic acid is observed in Ca2+-free medium. This indicates that arachidonic acid induces release of calcium ions from intracellular stores. The blocker of ryanodine receptor channels of sarcoplasmic reticulum dantrolene (20 μM) inhibits this effect by 68.7 ± 6.3% (p < 0.001). The inhibitor of two-pore calcium channels of endolysosomal vesicles trans-NED19 (10 μM) decreases the response to arachidonic acid by 35.8 ± 5.4% (p < 0.05). The phospholipase C inhibitor U73122 (10 μM) has no effect. These data indicate the involvement of ryanodine receptor calcium channels of sarcoplasmic reticulum in [Ca2+]i elevation in skeletal myotubes caused by arachidonic acid and possible participation of two-pore calcium channels from endolysosomal vesicles in this process.  相似文献   

6.
A calcium-sensitive microeletrode was used to measure free intracellular calcium in salivary gland cells of Calliphora during stimulation with 5-hydroxytryptamine (5-HT). The resting level of calcium was approximately 10?7M or less but increased in a dose-dependent way sometimes to levels in excess of 10?6M. The onset of the calcium signal was closely related to changes in membrane and transepithelial potential. This calcium response was greatly reduced when the extracellular calcium concentration was reduced from 10?3 to 10?4M. This dependence on external calcium is consistent with previous observations that 5-HT acts to increase the permeability of the basal plasma membrane to calcium. These observations indicate that an increase in the intracellular level of calcium is an early event associated with the onset of fluid secretion in this insect salivary gland.  相似文献   

7.
Classic calcium hypothesis states that depolarization-induced increase in intracellular Ca2+ concentration ([Ca2+]i) triggers vesicle exocytosis by increasing vesicle release probability in neurons and neuroendocrine cells. The extracellular Ca2+, in this calcium hypothesis, serves as a reservoir of Ca2+ source. Recently we find that extracellular Ca2+per se inhibits the [Ca2+]i dependent vesicle exocytosis, but it remains unclear whether quantal size is regulated by extracellular, or intracellular Ca2+ or both [1]. In this work we showed that, in physiological condition, extracellular Ca2+per se specifically inhibited the quantal size of single vesicle release in rat adrenal slice chromaffin cells. The extracellular Ca2+ in physiological concentration (2.5 mM) directly regulated fusion pore kinetics of spontaneous quantal release of catecholamine. In addition, removal of extracellular Ca2+ directly triggered vesicle exocytosis without eliciting intracellular Ca2+. We propose that intracellular Ca2+ and extracellular Ca2+per se cooperately regulate single vesicle exocytosis. The vesicle release probability was jointly modulated by both intracellular and extracellular Ca2+, while the vesicle quantal size was mainly determined by extracellular Ca2+ in chromaffin cells physiologically.  相似文献   

8.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

9.
Germination of Nemophila insignis seed is inhibited by light over a wide range of temperatures. At low temperatures the light intensity required for inhibition is higher. At 25 C there is little germination (in darkness as well as in light); at 27.5 C germination is inhibited altogether. Virtually complete germination in light is obtained when the endosperm directly covering the radicle is removed. This operation also improves germination in darkness at 25 C. Mechanical scarification performed elsewhere in the seed is without effect. As with Phacelia tanacetifolia, Nemophila seed apparently fails to germinate in light because the endosperm restrains the expansive growth of the embryo. The embryo of dark-imbibed seed develops a force which enables it to overcome the physical resistance of the endosperm. Light inhibits the process which leads to generation of “expansive force.” Gibberellic acid at 5 × 10–4 m stimulates germination in light and in the dark. Abscisic acid at 10-4 m inhibits germination; at 10-6 m it inhibits only root growth. The inhibition of germination or root growth caused by abscisic acid cannot be reversed by gibberellic acid. Eighty per cent oxygen under certain conditions promotes germination. The rate of O2 uptake is enhanced in oxygen-enriched atmosphere; however, there is no corresponding increase in the rate of CO2 output. Thus high oxygen tension enhances an oxidative process other than respiration. This reaction is favorable to seed germination.  相似文献   

10.
Changes in levels of isocitrate lyase, malate synthase, and catalase have been investigated during germination of flax (Linum usitatissimum L.) in the presence and absence of itaconate. Germination was accompanied by a rapid increase in these enzymes during the first 3 days. The presence of 38 millimolar itaconate inhibited the incidence of seed germination and the growth of embryo axes as well as the appearance of isocitrate lyase but did not alter the levels of malate synthase, catalase, or NADP+-isocitrate dehydrogenase. The specific activity for the latter enzyme was constant throughout germination. Oxalate or succinate, each at 38 millimolar, had no effect upon germination of flax seeds. Itaconate did not inhibit the activities of malate synthase, catalase, or NADP+-isocitrate dehydrogenase in vitro but was a potent noncompetitive inhibitor of isocitrate lyase (Ki:17 micromolar at 30 C, pH 7.6). Itaconate (at 38 millimolar) did not alter the appearance of malate synthase but reduced the incidence of germination, onset of germination, and growth of the embryo axis as well as the specific activity of isocitrate lyase in seedlings of Zea mays, Vigna glabra, Glycine hispida, Vigna sinensis, Trigonella foenumgraecum, Lens culinaris, and Medicago sativa. The incidence and onset of germination of wheat seeds were unaltered by the same concentration of itaconate but seedlings did not contain isocitrate lyase or malate synthase. The data suggest that itaconate may be isocitrate lyase-directed in inhibiting the germination of fatty seeds.  相似文献   

11.
The induction of a dissolved inorganic carbon (DIC) accumulating mechanism in the two algal species Scenedesmus obliquus (WT) and Chlamydomonas reinhardtii (137 c+) was physiologically characterized by monitoring DIC uptake kinetics at a low and constant DIC concentration (120-140 micromolar), after transfer from high-DIC culturing conditions. A potentiometric titration method was used to measure and calculate algal DIC uptake. Full acclimation to low-DIC conditions was obtained within a period of 90 min, after which time the DIC uptake had been increased 7 to 10 times. Experiments were also conducted in the presence of inhibitors against DIC accumulation. The inhibitor of extracellular carbonic anhydrase (CA), acetazolamide (50 micromolar), inhibited the adaptation partly, while the inhibitor of both extra- and intracellular CA, ethoxyzolamide (50 micromolar) totally inhibited the acclimation. Cycloheximide (10 micrograms per milliliter), which inhibits protein synthesis on cytoplasmic ribosomes, and vanadate (180 micromolar), which inhibits the plasmamembrane bound ATPase, also inhibited the acclimation totally. These results taken together suggest that the algae are dependent on intracellular CA, plasmamembrane bound ATPase, and de novo protein synthesis for DIC accumulation. Also, these components are more important than extracellular CA for the overall function of the DIC-accumulating mechanism.  相似文献   

12.
We report that a localized intracellular and extracellular Ca2+ mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca2+-sensitive protein (yellow cameleon 3.0) report that intracellular Ca2+ selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca2+ increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca2+ increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca2+ mobilization. Indomethacin and verapamil also inhibit the luminal Ca2+ increase. Intracellular Ca2+ chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca2+ increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N′-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca2+ and unevenly inhibits late-phase intracellular Ca2+ mobilization. Both modes of Ca2+ chelation slow gastric repair. In plasma membrane Ca-ATPase 1+/− mice, but not plasma membrane Ca-ATPase 4−/− mice, there is slowed epithelial repair and a diminished gastric surface Ca2+ increase. We conclude that endogenous Ca2+, mobilized by signaling pathways and transmembrane Ca2+ transport, causes increased Ca2+ levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo.  相似文献   

13.
The plant hormone cytokinin stimulates target caulonemata of Funaria to form buds that develop into the leafy gametophyte. Previous reports have shown that increases in intracellular Ca2+ occur during hormone-activated budding concomitant with an alteration in the polarity of the organelles in the bud site. In order to ascertain the involvement of voltage-dependent Ca2+ channels in this phenomenon, we have employed dihydropyridines (DHP), compounds noted for their ability to alter Ca2+ flux through potential-sensitive channels. Addition of the DHP agonists (+)202-791 and CGP 28392 (100 micromolar) induces bud initials on every target cell including the tip cell. Application of the DHP antagonist (−)202-791, in the presence of cytokinin (1 micromolar benzyladenine), inhibits budding 96%. Similarly, nifedipine blocks cytokinin-induced budding 87% and its effect on budding can be inactivated with a pulse of ultraviolet light. These results are consistent with the idea that cytokinin induces the budding response by increasing Ca2+ entry through voltage-operated channels. We suggest that cytokinin activation of Ca2+ channels is the first action of the hormone and that subsequent cytokinin-induced mechanisms are operating to maintain budding, since DHP-induced initials rarely develop into complete buds.  相似文献   

14.
Takagi S  Nagai R 《Plant physiology》1988,88(1):228-232
In Vallisneria gigantea Graebner mesophyll cells, red light irradiation induces cytoplasmic streaming by decreasing the Ca2+ concentration in the cytoplasm, while far-red light irradiation inhibits it by increasing the concentration (S Takagi, R Nagai 1985 Plant Cell Physiol 26: 941-951). To examine the effects of light irradiation on Ca2+ fluxes across the cell membrane, protoplasts are isolated from the mesophyll cells. Changes in Ca2+ concentration in a solution bathing the protoplasts are monitored by spectrophotometry, using the Ca2+ -sensitive dye murexide. Red light irradiation induces an increase in Ca2+ concentration, which means an efflux of Ca2+ from the protoplasts. Subsequent far-red light irradiation produces a rapid decrease in Ca2+ concentration down to the dark control level; however, this is not observed in the presence of the Ca2+ -channel blocker nifedipine. Vanadate inhibits both the streaming and the Ca2+ efflux induced by red light irradiation. The results suggest that red light and far-red light control Ca2+ movements across the cell membrane, which in turn regulate the streaming.  相似文献   

15.
Dopamine (DA) released from the hypothalamus tonically inhibits pituitary lactotrophs. DA (at micromolar concentration) opens potassium channels, hyperpolarizing the lactotrophs and thus preventing the calcium influx that triggers prolactin hormone release. Surprisingly, at concentrations ∼1000 lower, DA can stimulate prolactin secretion. Here, we investigated whether an increase in a K+ current could mediate this stimulatory effect. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both I BK and I A could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. I BK always increased the intracellular Ca2+ concentration, while I A could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns. Action Editor: Christiane Linster  相似文献   

16.
The effect of modifying calcium concentration on the expression of the photosynthesis circadian rhythm was examined in Euglena gracilis, Klebs strain Z. Expression of the oxygen evolution rhythm required the presence of both extracellular and intracellular calcium. Several treatments were found to uncouple the rate of the light reactions from the biological clock. In the presence of these chemical agents, the rate of oxygen evolution increased steadily throughout the light portion of the light/dark cycle, instead of showing a peak of activity in the middle of the light cycle. Oxygen evolution was uncoupled from the biological clock when extracellular calcium concentrations were altered by the presence of EGTA or LaCl3. Uncoupling was also observed when intracellular calcium concentrations were disrupted by the use of Ca2+ channel blockers, the intracellular Ca2+ antagonist 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, or by disrupting expression of the inositol trisphosphate system. Uncoupling was also observed when the diacylglycerol signaling system, which activates kinase C, was inhibited by acridine orange. The inhibition was reversed by the presence of phorbol esters which activate the kinase. It was concluded that both the inositol trisphosphate and diacylglycerol signaling systems were required for the expression of the oxygen evolution rhythm generated by the biological clock.  相似文献   

17.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

18.
The effects of BAPTA, heparin, and neomycin on electrical light responses were studied in the photoreceptors of Hirudo medicinalis. Light activation produces a fast increase in intracellular Ca2+ concentration (Cai) as detected with the fluorescent Ca2+ indicator calcium green-5N. Chelating intracellular calcium by injections of 10 mmol l-1 BAPTA suppresses spontaneous quantum bumps, reduces light sensitivity by more than 2 log10 units, and substantially increases the latent period of light responses. BAPTA strongly inhibits the plateau phase of responses to long steps of light. Injections of 45-100 mg ml-1 of heparin act in a similar manner to BAPTA, affecting the latency of the light responses even more. De-N-sulfated heparin, an inactive analog, is almost ineffective at the same concentration compared with heparin. Heparin diminishes the light-induced Cai elevation significantly, whereas de-N-sulfated heparin does not. Intracellular injections of 50-100 mmol l-1 of the aminoglycoside neomycin, which inhibits phospholipase-C-mediated inositol 1,4,5-trisphosphate formation, acts similar to BAPTA and heparin. Pressure injections of the hydrolysis resistant analog of inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate, strongly depolarize leech photoreceptors and mimic an effect of light adaptation. These results suggest a close similarity between phototransduction mechanisms in leech photoreceptors and existing models for visual transduction in other invertebrate microvillar photoreceptors.  相似文献   

19.
Staphylococcal serine proteinase (SSP) can influence various functions of human polymorphonuclear leukocytes (PMNL) including chemotaxis and phagocytosis. Since the rise in intracellular free calcium concentration is an important step in signal transduction leading to phagocyte activation, we tested the ability of SSP to increase the intracellular free calcium concentration in human PMNL using the fluorescent calcium indicator Fura-2AM. PMNL isolated from healthy donors responded to SSP in the concentration range of 10 to 100 µg/ml. The highest Ca2+ rise (104 ± 47 nM) was observed for 10 µg/ml SSP. It was mainly dependent (81 ± 11%) on extracellular calcium influx, however, SSP mobilized 68 ± 7% of Ca2+ from intracellular calcium stores. Boiling of SSP or preincubation with phenylmethylsulphonylfluoride (an serine proteinase inhibitor) did not change its ability to increase intracellular free calcium concentration in PMNL. It suggests that active center of SSP is not responsible for Ca2+ mobilization. Finally, PMNL responded to each of three consecutive stimulations with SSP independently of the presence of high or low extracellular Ca2 concentration. This may be an additional mechanism responsible for activation of human PMNL and degradation of alveolar walls during the staphylococcal infection in the lower airways.  相似文献   

20.
Chlorophyll a fluorescence transients from mesophyll and single guard cell pairs of Vicia faba were measured by microspectrofluorometry. In both chloroplast types, fluorescence induction (O to P) was similar under actinic blue and green light. In slow transients from mesophyll cell chloroplasts, blue and green light induced identical, typical rapid quenching from P to S, and the M peak. In contrast, the P to S transient from guard cell (GC) chloroplasts irradiated with blue light showed a much slower quenching rate, and the P to T transition showed no M peak. Actinic green light induced mesophyll-like transients in GC chloroplasts, including rapid quenching from P to S and the M peak. Detection of these transients in single pairs of GC and isolated protoplasts ruled out mesophyll contamination as a signal source. Green light induced a rapid quenching and the M peak in GC chloroplasts from several species. The effect of CO2 concentration on the fluorescence transients was investigated in the presence of HCO3 at pH 6.8 and 10.0. In transients induced by green light in both chloroplast types, a pH increase concomitant with a reduction in CO2 concentration caused an increase in the initial rate of quenching and the elimination of the M peak. Actinic blue light induced mesophyll-like transients from GC chloroplasts in the presence of 10 micromolar KCN, a concentration at which the blue light-induced stomatal opening is inhibited. Addition of 100 to 200 micromolar phosphate also caused large increases in fluorescence quenching rates and a M peak. These results indicate that blue light modulates photosynthetic activity in GC chloroplasts. This blue light effect is not observed in the absence of transduction events connected with the blue light response and in the presence of high phosphate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号